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Abstract

This paper analyzes the effects of thermal radiation, Hall and ion slip parameter on mixed con-
vective nanofluid flow in an annuli between two concentric cylinders in the existence of strong
magnetic field. The nonlinear governing equations are non-dimensionalized and then solved by us-
ing homotopy analysis method. The influence of radiation, magnetic, Hall and ion slip parameters
on the velocity, temperature, nanoparticle concentration, Nusselt number and nanoparticle Sher-
wood number are investigated and represented graphically.
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1. Introduction

Heat transfer and mixed convection flow of nanofluid in annulus between two concentric cylin-
ders is an important phenomena in the system of Engineering in view of its enormous range of
applications in thermal storage systems, thermal insulation, solar energy systems, compact heat
exchangers, nuclear reactors, aircraft fuselage insulation to underground electrical transmission
cables, boilers, cooling of electronic devices, cooling core of nuclear reactors, cooling systems,
gas-cooled electrical cables and electrical gas insulated transmission lines. A number of researchers
have studies convective heat transfer flows in annulus region between two concentric cylinders (See
Dawood (2015) for review of such flows).
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Nanofluids, first pioneered by Choi (1995), consists of uniformly suspended and dispersed
nanometer sized particles in a base fluid. As these fluids have a higher thermal conductivity than
the base fluids, they are used for developing both thermal conductivity and suspension stability in
the different industrial systems. Several investigators have analyzed the mixed convection flow and
heat transfer of nanofluids in an annular passages under various aspects.

The influence of thermal radiation on nanofluid can be most important in applications of space
technology and at high operating temperature. In many areas of thermal radiation effect on combi-
nation of free and forced convection flow have not been studies since thermal radiation is a compli-
cated parameter. Therefore the researchers have a great opportunity and significance to investigate
on radiative flow of nanofluid. Srinivasacharya and Shafeeurrahman (2017) studied the effects of
radiation and Joule heating on mixed convective nanofluid between two concentric cylinders. The
effects of radiation and rotation on MHD chemically reacting nanofluid flow past a permeable flat
plate with in porous medium examined by Ramanareddy et al. (2016).

Convective heat exchange and fluid flow problems with the interaction of magnetic field have at-
tracted much attention due to the several astrophysics and industrial applications. The applications
include study of solar plasma, stellar structures, and terrestrial cores. In industrial processes the
extraction of geothermal energy, nuclear reactors, metallurgical and crystal growth in the field of
semiconductors. Chamkha et al. (2015) presented a review on various research work done on MHD
convection of nanofluids in various geometries and applications. Mozayyeni and Rahimi (2012)
studied the mixed convective flow in cylindrical annulus with an effect in the radial direction and
constant magnetic field with rotating outer cylinder. Ashorynejad et al. (2013) investigated numer-
ically the mixed convective heat transfer in an annuli of horizontal cylinder filled with nanofluid
considering the significance of constant radial magnetic field on the fluid. Sheikholeslami et al.
(2015, 2017, 2017) studied the influence of magnetic field on nanofluid flow, heat and mass trans-
fer in between two horizontal coaxial cylinders using a two-phase model. Das et al. (2015) analyses
the mixed convective nanofluid flow in a concentric cylindrical pipes considering a uniform mag-
netic field.

In the investigations concerned with the MHD convective flows, Hall current and ion slip terms in
Ohms law were neglected in order to simplify the mathematical analysis of the problem. However,
the significance of Hall current and ion slip are essential in the presence of strong magnetic field.
Therefore, in several physical situations it is required to include the effect of Hall current and ion
slip terms in the MHD equations. The effects of Hall term on electrically conducting steady viscous
fluid in channels was studied by Tani (1962). Satya Narayana et al.(2013) studied the effects of Hall
current and radiation absorption on MHD micropolar fluid in a rotating system. Rajput et al. (2017,
2018) examined the rotation and radiation effects on MHD flow past an inclined plate with variable
wall temperature and mass diffusion in the presence of Hall current. Hayat et al. (2016) addressed
the mixed convective peristaltic flow of nanofluid in a channel with Hall and ion slip effects.
Hall and ion slip effects on mixed convection flow of nanofluid between two concentric cylinders
is analyzed by Srinivasacharya and Shafeeurrahman (2017). Hazarika (2014) has analyzed Hall
current in a rotating channel on MHD flow with radiation and viscous dissipation.

The preceding literature reveals that the problem of heat transfer in mixed convective nanofluid
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flow in a concentric cylinders with effects of radiation, Hall current and ion slip parameter has
not only considered, but also the interaction of Hall current, ion slip effects with magnetic nano
particles in a mixed convection flow presents an interesting fluid dynamics problem. Hence, the aim
of the present paper is to find the influence of radiation, Hall current and ion slip parameter on the
flow of mixed convection and heat transfer nanofluid in concentric cylinders. The HAM procedure
is used to find the solution of the nonlinear differential equations. The HAM method was first
introduced by Liao (2003), which is one of the most powerful techniques to solve various types
of strongly nonlinear equations. The effect of flow parameters on the profiles of dimensionless
velocity, temperature and nanoparticle concentration is examined.

2. Formulation of the problem

Consider steady, laminar and incompressible nanofluid flow in an annular space between two in-
finitely long concentric cylinders of radius a and b (a < b) and kept at temperatures Ta and Tb,
respectively. Choose cylindrical polar coordinates system (r, ψ, z) with z− axis along the common
axis of cylinders and r normal to the z−axis. Assume that the outer cylinder is rotating with con-
stant angular velocity Ω whereas the inner cylinder is at rest. The flow is induced due to the rotation
of the exterior cylinder. A strong magnetic field B0 is taken in an axial direction. Comparison with
the applied magnetic field, the induced magnetic field can be ignored with the assumption of mag-
netic Reynolds number is very low. Assume relatively high electron-atom collision frequency so
that the impact of Hall, ion slip cannot be omitted. Thermophysical characteristics of the nanofluid
are taken as constant except density in the buoyancy term of the balance of momentum equation.
In addition, the Brownian motion and thermophoresis effects are incorporated (2006). The veloc-
ity component along ψ direction, temperature, concentration and nanoparticle volume fraction are
denoted by is u, T and φ, respectively.

The equations which govern the present flow (2006) with Boussinesq approximation are
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∂ψ
= 0, (1)

∂p

∂r
=
ρu2

r
− σ B2

0 βh u

(α2
e + β2h)

, (2)

µ
∂

∂r

[
1

r

∂

∂r
(r u)

]
+ (1− φ)ρfg [βT (T − Ta)]− (ρp − ρf ) g(φ− φa)

− σ B2
0 αe u

(α2
e + β2h)

− 1

r

∂p

∂ψ
= 0,

(3)

α

[
∂2T

∂r2
+

1

r

∂T

∂r

]
+

µ

ρcp

[(
∂u

∂r

)2

− 2
u

r

∂u

∂r
+
(u
r

)2]

− 1

ρcp
∇.qr + τ

[
DB

∂T

∂r

∂φ

∂r
+
DT

T0

(
∂T

∂r

)2
]

= 0,

(4)

DB

[
∂2φ

∂r2
+

1

r

∂φ

∂r

]
+
DT

T0

[
∂2T

∂r2
+

1

r

∂T

∂r

]
= 0, (5)



AAM: Intern. J., Special Issue No. 4 (March 2019) 85

where the electrical conductivity is σ, density is ρ, pressure is p, specific heat capacity isCp, thermal
diffusion ratio is KT , viscosity coefficient is µ, acceleration due to gravity is g, ion slip parameter
is βi, Hall parameter is βh, Brownian diffusion coefficient is DB, αe = 1+βh βi is a constant, mean
fluid temperature is T0, coefficients of thermal expansion is βT , effective thermal diffusivity is α,
thermophoretic diffusion coefficient is DT , coefficient of thermal conductivity is kf = α (ρC)p, the
ratio of heat capacity of the fluid and effective heat capacity of the nanoparticle material is τ and
the radiation heat flux is qr, under the Rosseland approximation we assume qr as

qr = −4σ∗

3χ

∂T 4

∂y
, (6)

where Stefan-Boltzman constant is σ∗, coefficient of mean absorption is χ. We assume the variation
in fluid phase temperature inside the flow to be appropriately minimum such that T 4 may be shown
as a linearly continuous function of the temperatures and enlarged in a Taylor series around T0 and
removing highest order terms we get T 4 = 4T 3

0 T − 3T 4
0 .

The boundary conditions are

u = 0, T = Ta, φ = φa at r = a, (7a)
u = bΩ, T = Tb, φ = φb at r = b. (7b)

Introducing the following non-dimensional variables
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in Equations (1) - (5), we get the nonlinear differential equations as
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The corresponding boundary conditions (7) are

S = 0, θ = 0, f = 0 at λ = λ0,

S = 1, θ = 1, f = b at λ = 1.
(12)

The main aim of this study is to obtain the parameters of nanofluid flow, heat and mass transfer
problems, likeNu andNSh ( Nusselt number, nanoparticle sherwood number, respectively). These
parameters characterize the wall heat and nanoparticle mass transfer rates, respectively. The heat
and nanoparticle mass fluxes in the concentric cylinders can be achieved from

qw = −kf∇T + qr, qs = −DB∇φ. (13)

The Nusselt number Nu = b qw
kf (Tb−Ta)

, and the nanoparticle sherwood number NSh = b qs
DB (Tb−Ta)

are given by
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(14)

3. Homotopy solution

The first step in HAM solution, is choosing the initial value of f(λ), θ(λ) and S(λ) and auxiliary
linear operators.(For more details on homotopy analysis method see the works of Liao (2003, 2004,
2010, 2013). Therefore, we choose the initial approximations as

f0(λ) =
b (λ− λ0)

1− λ0
, θ0(λ) =

λ− λ0
1− λ0

and S0(λ) =
λ− λ0
1− λ0

, (15)

and the auxiliary linear operators as

Li =
∂2

∂λ2
for i = 1, 2, 3, (16)

such that

L1(c1 + c2λ) = 0, L2(c3 + c4λ) = 0 and L3(c5 + c6λ) = 0, (17)

where ci, (i = 1, 2, · · · , 6), are constants. The second step in HAM is to defining the zeroth order
deformation, which is given by

(1− p)L1[f(λ; p)− f0(λ)] = ph1N1[f(λ; p)], (18)

(1− p)L2[θ(λ; p)− θ0(λ)] = ph2N2[θ(λ; p)], (19)

(1− p)L3[S(λ; p)− S0(λ)] = ph3N3[S(λ; p)], (20)
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where
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where p ∈ [0, 1] is the embedded parameter and hi, (i = 1, 2, 3) are auxiliary parameters which are
not vanish. The equivalent boundary conditions are

f(0; p) = 0, θ(0; p) = 0, S(0; p) = 0,

f(1; p) = b, θ(1; p) = 1, S(1; p) = 1.
(24)

Next, the deformation equations of mth-order are given by
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for integer m

χm = 0 for m ≤ 1,

= 1 for m > 1.

From p = 0 to p = 1, we can have

f(λ; 0) = f0, f(λ; 1) = f(λ), (29)
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θ(λ; 0) = θ0, θ(λ; 1) = θ(λ), (30)

S(λ; 0) = S0, S(λ; 1) = S(λ). (31)

Thus, as p varying from 0 to 1, f , θ and S varies continuously from f0, θ0 and S0 to final value
f(λ), θ(λ) and S(λ), respectively. In view of Taylor’s series f, θ and S can be written as
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(32)

we have to choose the values of the auxiliary parameters for which the series (32) are converge at
p = 1, i.e.,

f(λ) = f0 +

∞∑
m=1

fm(λ), θ(λ) = θ0 +
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(33)

4. Convergence

In HAM, it is essential to see that the series solution converges. Also, the rate of convergence of
approximation for the HAM solution mainly calculate on the values of h. To find the admissible
space of the auxiliary parameters, h curves are drown for 16th-order of approximation and shown
in Figure1. It is visible from this figure that the permissible interval for h1, h2 and h3 is −0.6 <

h1 < −0.0, −1.0 < h2 < −0.3 and −1.8 < h3 < −0.4, respectively.

The following average residual errors (see Liao (2010)) are computed to obtain the optimal value
of auxiliary parameter
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Table 1. At different order of approximations the optimal values of h1, h2 and h3

Optimal of h1 Optimal of h2 Optimal of h3
Order h1 Min of Em h2 Min of Em h3 Min of Em

12 -0.09 1.02× 10−3 -0.71 6.51× 10−4 -1.18 2.92× 10−5

14 -0.10 1.93× 10−3 -0.69 8.29× 10−4 -1.16 3.68× 10−4

16 -0.10 2.79× 10−3 -0.69 1.11× 10−5 -1.18 9.73× 10−4

Table 2. Convergence of HAM solutions for different order of approximations.

Order f(0.625) θ(0.625) S(0.625)

05 0.4376535201 0.6737468076 0.6581184839
10 0.4406095166 0.6916338076 0.6219805748
15 0.4413595133 0.7055058072 0.6127974698
20 0.4420191206 0.7061768072 0.6020224807
25 0.4420194520 0.7172401678 0.6020226948
30 0.4420194612 0.7172472210 0.6020226464
35 0.4420194612 0.7172472807 0.6020226464
40 0.4420194612 0.7172472807 0.6020226464
45 0.4420194612 0.7172472807 0.6020226464
50 0.4420194612 0.7172472807 0.6020226464
55 0.4420194612 0.7172472807 0.6020226464

where4t = 1/K and K = 5. At various levels of approximations (m), least average residual errors
are represented in Table 1. From this, we see that the average residual errors are least at h1 = −0.43,
h2 = −0.69 and h3 = −1.1. Therefore, the optimality of convergence control parameters are appro-
priated as h1 = −0.43, h2 = −0.69 and h3 = −1.1. For different values of m the series solutions are
calculated and represented in Table 2. It is notice from this table that the series (32) converges in
the total area of λ. The graphs of the ratio

βf =

∣∣∣∣ fm(h)

fm−1(h)

∣∣∣∣ , βθ =

∣∣∣∣ θm(h)

θm−1(h)

∣∣∣∣ , βS =

∣∣∣∣ Sm(h)

Sm−1(h)

∣∣∣∣ , (35)

versus the number of terms m is represented in Figure 2. These figures indicates that the the series
(33) converges to the exact solution.

5. Results and discussion

The influence of thermal radiation Rd on the velocity f(λ), temperature θ(λ) and nanoparticle
volume fraction S(λ) is shown graphically in Figure 3. by taking the remaining parameters as Br =

0.5, Pr = 1.0, A = 1, Re = 5, Nb = 0.5 and Nr = 1.0 and analyze the values of Nusselt number and
nanoparticle sherwood number in presence of magnetic parameter Ha, thermal radiation Rd, ion-
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Figure 1. The h-curves of f(λ), θ(λ) and S(λ) when Nr = 1.0, Nt = 0.5, Nb = 0.5, Gr = 10.0, Ha = 5.0, A =
1.0, Re = 5.0, Pr = 1.0, Rd = 1.0, βi = 2.0, βh = 2.0, Br = 0.5.

slip parameter βi and Hall parameter βh against the parameters Nt and Gr are shown graphically
in Figures 4 - 7.

Figure 3 represents the impact of the thermal radiation Rd on dimensionless velocity in flow direc-
tion, temperature and nanoparticle volume fraction. Figure 3a reveals that there is a small decay in
dimensionless velocity with an increase in Rd. Figure 3b illustrates that the dimensionless temper-
ature θ(λ) decreases with enhance in Rd. Figure 3c represents that the nanoparticle concentration
S(λ) enhanced with an increment in Rd.

Figure 4 represents the impact of the magnetite parameter Ha on nanoparticle sherwood number
and Nusselt number against thermophoresis parameters Nt. Figure 4a reveals that the Nusselt num-
ber Nu enhances with an growth in Ha. Figure 4b depicts that the nanoparticle sherwood number
NSh rises as Ha increases.

The variation of nanoparticle sherwood number NSh and Nusselt number Nu against ther-
mophoresis parametersNt with Hall-parameter βh is presented in Figure 5. It is noticed from Figure
5a that Nu decreases with a rise in the parameter βh. There is a decay in a nanoparticle Sherwood
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Figure 2. The ratios (a) βf , (b) βθ and (c) βS from the theorem to reveal the convergence of the HAM solutions.

number NSh with a rise in βh as depicted in Figure 5b. The inclusion of Hall parameter reduces
the effective conductivity and hence drops the magnetite resistive force. Hence increase in βh de-
creases the Nusselt number Nu and nanoparticle sherwood number NSh against thermophoresis
parameters Nt.

The changes in Nusselt number Nu and nanoparticle sherwood number NSh against thermophore-
sis Nt with thermal radiation Rd is presented in Figure 6. It is noticed from Figure 6a that Nu de-
creases with a rise in Rd. There is an enhance in a nanoparticle sherwood number NSh with a rise
in Rd as depicted in Figure 6b. Hence increase in Rd decreases Nu whereas increases nanoparticle
sherwood number NSh against thermophoresis parameters Nt.

The impact of ion-slip parameter βi on Nusselt number and nanoparticle sherwood number against
Grashof number Gr is depicted in Figure 7. It is observed from Figure 7a that, the Nusselt number
decreases with a rise in the parameter βi. There is a decay in a nanoparticle Sherwood number
NSh with a rise in βi as depicted in Figure 7b. The inclusion of ion-slip parameter reduces the
effective conductivity and hence drops the magnetic resistive force. Hence increase in βi decreases
Nu and NSh against Grashof number Gr.
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Figure 3. Effect of Radiation Rd on (a) Velocity, (b) Temperature and (c) Nanoparticle concentration profiles.

6. Conclusion

This article investigates the effects of thermal radiation, Hall and ion slip parameter on mixed
convective flow of a nanofluid between two concentric coaxial cylinders considering magnetic
field against the parameters Nt and Gr. The non-dimensional non-linear equations are solved by
using Homotopy analysis method (HAM). The main findings are as follows

The dimensionless velocity, temperature decreases whereas nanoparticle concentration rises with
an increase in thermal radiation parameter Rd. The Nusselt numberNu and nanoparticle Sherwood
number NSh against thermophoresis parameters Nt raises with an increase in magnetic parameter.
As an increase in the Hall parameter, the Nusselt number Nu, and nanoparticle Sherwood num-
ber NSh against thermophoresis parameters Nt are decreased. As an increase in thermal radiation
Rd, the Nusselt number Nu decreases whereas nanoparticle Sherwood number NSh against ther-
mophoresis parameters Nt are increases. As the ion slip parameter rises, the Nusselt number Nu
and nanoparticle Sherwood number NSh against Grashof number Gr decreases.
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Figure 4. Effect of Ha on (a) Nusselt number (b) Nanoparticle Sherwood number versus thermophoresis parameters.
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Figure 5. Effect of βh on (a) Nusselt number,(b) Nanoparticle Sherwood number versus thermophoresis parameters.
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Figure 6. Effect of Radiation Rd on (a) Nusselt number, (b) Nanoparticle Sherwood number versus thermophoresis
parameters.
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Figure 7. Effect of βi on (a) Nusselt number, (b) Nanoparticle Sherwood number versus Grashof numbers.


