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Abstract

This article presents the effect of thermal radiation on MHD boundary layer flow of tangent hyper-
bolic fluid with nanoparticles past an inclined stretching sheet with heat source/sink and convective
boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the con-
centration boundary condition, which is the current topic that have yet to be studied extensively.
The partial differential systems are reduced to ordinary differential systems by using appropriate
similarity transformations. The reduced systems are solved numerically by Runge-Kutta fourth or-
der method with shooting technique. The velocity, temperature and nanoparticle volume fraction
profiles are discussed for different physical parameters. As well as the Skin friction coefficient,
Nusselt number and Sherwood numbers have discussed in detail and presented through graphically.
It is found that the thermal radiation enhances the effective thermal diffusivity and the tempera-
ture rises. It is also observed that the buoyancy parameter strengthens the velocity field, showing a
decreasing behavior of temperature and nanoparticle volume fraction profiles.
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1. Introduction

The momentum and heat transfer of the boundary layer flow over a stretching surface have been ap-
plied in numerous chemical engineering processes, such as polymer extrusion processes and met-
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allurgical processes, which involve cooling of a molten liquid. Sakiadis (1961) initiated studying
the boundary layer flow over a stretched surface moving with a constant velocity and formulated
boundary layer equations for two dimensional and axisymmetric flows. Crane (1970) investigated
the flow caused by a stretching sheet. On the other hand, Gupta and Gupta (1977) stressed that
realistically, stretching surface is not necessarily continuous. Magyari and Keller (1999) analyzed
the steady boundary layers on an exponentially stretching continuous surface with an exponential
temperature distribution. Elbashbeshy (2001) investigated the heat transfer over an exponentially
stretching continuous surface with suction. Fathizadeh et al. (2011) proposed a powerful modifi-
cation of the homotopy perturbation method for MHD flow over a stretching sheet. Bhattacharyya
et al. (2013) analyzed the similarity solution of mixed convective boundary layer flow towards a
vertical surface with slip conditions. The analytical solution of mixed convection boundary layer
flow of micropolar fluid over a heated shrinking surface was investigated by Rashidi et al. (2013).
Hayat et al. (2014) studied the mixed convective two-dimensional flow due to a vertical porous
plate. The flow analysis was carried out in the presence of variable thermal conductivity and con-
vective boundary condition.

The most important non-Newtonian fluid model is a tangent hyperbolic fluid model and which
has certain advantages over other non-Newtonian formulations. Pop and Ingham (2001) presented
the tangent hyperbolic fluid model and it is extensively used in different laboratory experiments.
After that, Nadeem and Akram (2009) studied the peristaltic transport of a hyperbolic tangent
fluid within an asymmetric channel. The tangent hyperbolic fluid model is used by Friedman et
al. (2013) for large-scale magneto-rheological fluid damper coils. In another study, peristaltic flow
of tangent hyperbolic fluid in a curved channel is studied by Nadeem and Maraj (2013) and they
explored the behavior of various parameters on pressure rise against flow rate and plotted stream
lines to understand the pattern of the flow. Akbar et al. (2013) investigated the steady MHD flow
of tangent hyperbolic fluid over a stretching sheet. They found that velocity profile decreases by
increasing power law index and Weissenberg number but demonstrates opposite results for skin
friction.

A nanofluid is a liquid containing nanometer-sized solid particles, called nanoparticles, which ba-
sically enhancing thermal conductivity of the base fluids according to an investigation of Choi
(1995). Pak and Cho (1998) ascribed the increased heat transfer coefficients noticed in nanoflu-
ids to the dispersion of suspended particles. Xuan and Li (2003) proposed that the heat transfer
enhancement was the result of the increase in turbulence induced by nanoparticle motion. Wang
and Wei (2009) show that macroscale heat conduction in nanofluids is of a dual-phase-lagging
type rather than the Fourier type. This leads to models for effective thermal capacity, conductivity
and diffusivity of nanofluids and reveals even more anomalous thermal behavior of nanofluids.
Due to the significant enhancing thermal conductivity property, nanofluids have huge advantages
over ordinary fluids. In packaging and plastic industry, incorporation of nanoparticles can play a
vital role on the quality and strength of final product. Following this pioneering work, Buongiorno
(2010) proposed a model in which seven slip mechanism is considered namely, inertia, Brown-
ian diffusion, thermophoresis, diffusionphoresis, Magnus effect, fluid drainage and gravity settling
and according to him absolute velocity can be viewed as the sum of the base fluids velocity and a
relative velocity. In this model he has not considered the effects of shape of nanoparticles.
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Kuznetsov and Nield (2010) have investigated the natural convective boundary layer flow of a
nanofluid past a vertical plate analytically. In this study they used a model for nanofluid that in-
corporates the Brownian motion and thermophoresis effects. Using the same model Khan and Pop
(2010) studied the boundary layer flow of a nanofluid over a stretching sheet with a constant sur-
face temperature. Kuznetsov and Nield (2014) reinvestigated their existing model and revised a
model for both active and zero flux of nanoparticle at the surface. In such conditions, they ar-
gued this model is more physically realistic as compared to the earlier model. Akram and Nadeem
(2014) investigated the impact of peristaltic transport of a tangent hyperbolic fluid in the presence
of nanoparticles under the influence of inclined magnetic field. They have found that increase in
the Brownian motion and thermophoresis leads to enhance temperature profile. Sajjad et al. (2016)
investigated the entropy generation via two important slip mechanism Brownian motion and ther-
mophoresis diffusion in non-Newtonian nanofluid flow with zero normal flux of nanoparticles at
the stretching surface. Bala (2016) investigated the theoretical study of the steady two-dimensional
MHD convective boundary layer flow of a Casson fluid over an exponentially inclined perme-
able stretching surface in the presence of thermal radiation and chemical reaction. Prabhakar et al.
(2016) analyzed the effect of inclined Lorentz forces on hyperbolic tangent nanofluid flow with
zero normal flux of nanoparticles at the stretching sheet. Recently, many researchers discussed the
tangent hyperbolic fluid flows over stretching surfaces (Hayat et al. (2016); Hayat et al. (2017);
Salahuddin et al. (2017); Waqas et al. (2017); Mair et al. (2017); Kumar et al. (2017); Wubshet
(2017)).

The aim of this present study is to investigate the condition of zero normal flux for tangent hy-
perbolic fluid over an inclined stretching sheet with the effects of radiation, heat source/sink and
convective boundary condition. In the view of inclined stretching sheet, mathematical model is
constructed by incorporating the Brownian motion and thermophoresis effects. This article is cate-
gorized in the following manner. In Section 2, tensor generation of tangent hyperbolic is performed
and a complete mathematical model is structured for non-Newtonian fluid in the presence of slip
mechanism of nanofluid. To discard the gravitational settling at the surface of the sheet, we have
considered the passive control of nanoparticles at the surface which are defined in the boundary
condition. In Section 4, results are determined for each velocity, temperature and nanoparticle vol-
ume fraction profiles with the help of numerical technique and these results are further described
physically against each emerging parameter. In Section 5, a conclusion is drawn under the whole
analysis.

2. Mathematical formulation

Consider the boundary layer flow of an incompressible viscous and electrically conducting tangent
hyperbolic nanofluid flow over an inclined stretching surface which coincides with the plane y = 0.
The fluid flow is confined to y > 0. The x-axis is taken along the continuous stretching sheet in the
direction of motion while the y-axis is perpendicular to the sheet. Two equal and opposite forces are
applied along the x-axis so that the wall is stretched keeping the origin fixed. The flow is assumed
to be generated by stretching of the elastic boundary sheet from a slit with a large force such that
the velocity of the boundary sheet is an exponential order of the flow directional coordinate x.
Along with this we considered thermal radiation and heat source/sink to the flow. The flow takes
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place in the upper half plane y > 0. A variable magnetic field B(x) is applied normal to the sheet.

The constitutive equation of tangent hyperbolic fluid is (Nadeem and Akram (2009)):

τ̄ =
[
µ∞ + (µ0 + µ∞) tanh (Γ¯̇γ)

n] ¯̇γ. (1)

In the above expression τ̄ is an extra stress tensor, µ∞ is an infinite shear rate viscosity, µ0 is the
zero shear rate viscosity, Γ is the time-dependent material constant, n is the power law index, i.e.
flow-behavior index, and ¯̇γ defined as:

¯̇γ =

√
1

2

∑
i

∑
j

¯̇γij ¯̇γji =

√
1

2
Π, (2)

where Π = 1
2 tr
(

gradV + (gradV )T
)2

. We consider Equation 1 for the case when µ∞ = 0 because
it is not possible to discuss the problem for the infinite shear rate viscosity and since we are con-
sidering tangent hyperbolic fluid that describing shear thinning effects so Γ¯̇γ < 1. Then Equation
1 takes the following form:

τ̄ = µ0
[
(Γ¯̇γ)

n] ¯̇γ

= µ0
[
(1 + Γ¯̇γ − 1)

n] ¯̇γ

= µ0 [1 + n (Γ¯̇γ − 1)] ¯̇γ.

(3)

The governing equations for the tangent hyperbolic nanofluid model after applying the boundary
layer approximations can be defined as follows:

∂u

∂x
+
∂v

∂y
= 0, (4)

u
∂u

∂x
+ v

∂u

∂y
=ν (1− n)

∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2

+ [gβT (T − T∞) + gβC (C − C∞)] sinγ − σB2

ρ
u,

(5)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+ τ

{
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
}

+
Q

ρcp
(T − T∞) , (6)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
, (7)

where u and v are the velocities in the x- and y-directions, respectively, ν = µ
ρ is the kinematic

viscosity, ρ is the fluid density (assumed constant), µ is the coefficient of fluid viscosity, σ is the
electrical conductivity, g is an acceleration due to gravity, βT is the coefficient of thermal expansion,
βC is the coefficient of solutal expansion, γ is an inclination angle, k is the thermal conductivity,
T is the fluid temperature, T∞ is constant temperature of the fluid in the viscid free stream, qr is
the radiative heat flux, cp is the specific heat at constant pressure, τ = (ρc)p

(ρc)f
is the ratio between

the effective heat capacity of the nanoparticle material to the heat capacity of the base fluid, ρp
is the density of the particles, cf is the volumetric expansion coefficient, C is the nanoparticle
volume fraction, DB is the Brownian diffusion coefficient, and DT is the thermophoretic diffusion
coefficient. Q is the dimensional heat generation (Q > 0) or absorption (Q < 0) coefficient.
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In writing Equation (5), we have neglected the induced magnetic field since the magnetic Reynolds
number for the flow is assumed to be very small.

Using Rosseland approximation for radiation we can write

qr = −4δ∗

3k∗
∂T 4

∂y
, (8)

where δ∗ is the Stefan-Boltzman constant, k∗ is the absorption coefficient. Assuming that T 4 is a
linear function of temperature, then

T 4 = 4T 3
∞T − 3T 4

∞. (9)

Using Equation (8) and (9), Equation (6) reduces to:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

16δ∗T 3
∞

3ρcpk∗
∂2T

∂y2
+ τ

{
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
}

+
Q

ρcp
(T − T∞) . (10)

2.1. Boundary conditions

The appropriate boundary conditions for the problem are given by

u = U, v = −V, − k∂T
∂y

= hf (Tf − T ) , DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0, (11)

u→ 0, T = T∞, C = C∞ as y →∞, (12)

where U = ax is the stretching velocity, Tf is the convective fluid temperature below the moving
sheet, hf the convective heat transfer coefficient, V > 0 is the velocity of suction and V < 0 is the
velocity of blowing.

2.2. Method of solution

Introducing the similarity variables as

η =
√

a
ν y, u = axf ′(η), v = −

√
aνf(η),

θ(η) = T−T∞
Tf−T∞ , φ(η) = C−C∞

C∞
,

(13)

where η is the similarity variable, f(η) is the dimensionless stream function, θ(η) is the dimension-
less temperature, φ(η) is the dimensionless concentration and primes denote differentiation with
respect to η. The transformed ordinary differential equations are:

(1− n) f ′′′ + ff ′′ − f ′2 + nWef ′′f ′′′ −Mf ′ + L1 (θ +N1φ) sinγ = 0, (14)

1

Pr

(
1 +

4

3
R

)
θ′′ + fθ′ +QHθ +Nbθ′φ′ +Ntθ′

2
= 0, (15)

φ′′ + LePrfφ′ +
Nt

Nb
θ′′ = 0, (16)

and the boundary conditions take the following form:

f(0) = S, f ′(0) = 1, θ′(0) = Bi (θ(0)− 1) , Nbφ′(0) +Ntθ′(0) = 0, (17)



AAM: Intern. J., Special Issue No. 4 (March 2019) 59

f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η →∞, (18)

where the prime denotes differentiation with respect to η, M = σB2

ρa is the magnetic parameter,

We =
√

2a
ν ΓU is the Weissenberg number, S = − V√

aν
> 0 or (< 0) is the suction (or blowing)

parameter, L1 = gβT (Tf−T∞)
a2x is the mixed convection parameter, N1 = βCC∞

βT (Tf−T∞) is the buoyancy

parameter, R = 4δ∗T 3
∞

kk∗ is the radiation parameter, Pr = µcp
k is the Prandtl number, Le = α

DB
is Lewis

number, α = k
ρcp

is the thermal diffusivity, Bi = hf

k

√
ν
a is the Biot number, QH = Q

aρcp
is the heat

source/sink parameter, Nb = τDBC∞
ν is the Brownian motion parameter, Nt = τDT (Tf−T∞)

T∞ν
is the

thermophoresis parameter. The important physical quantities of this problem are the skin friction
coefficient Cfx and the local Nusselt number Nux, which represent the wall shear stress and the
heat transfer rate respectively.

The skin friction coefficient Cfx is given by

CfxRex
1

2 =
(

(1− n)f ′′(η) +
n

2
We

(
f ′′(η)

)2)
η=0

, (19)

and the local Nusselt number Nux is given by

NuxRex
− 1

2 = −
(

1 +
4

3
R

)
θ′(0). (20)

Here Rex = Ux
ν is a local Reynold number.

3. Numerical procedure

The set of coupled nonlinear ordinary differential equations (14) - (16) along with the boundary
conditions (17) and (18) are solved numerically by the Runge-Kutta fourth order method with
shooting technique. The step size taken as ∆η = 0.01 is used to obtain the numerical solution,
and the boundary condition η → ∞ is approximated by ηmax = 10. The solutions are obtained
with an absolute error tolerance of 10−6 in all cases. In order to get a clear insight of physical
problem, numerical results are displayed with the help of graphical illustrations. Also, to calculate
the accuracy of the present numerical results, comparison with those obtained by Fathizadeh et al.
(2011) are shown in Table 1.

Table 1. Values of skin friction coefficient for several values of magnetic parameter M in the absence of n = R =
QH = Bi = S = γ = Nb = Nt = Le = 0.

M Numerically HPM [Fathizadeh et al. (2011)] Present study

0 -1 -1 -1.0000008
1 -1.41421 -1.41421 -1.414214
5 -2.44948 -2.44948 -2.44949
10 -3.31662 -3.31662 -3.316625

4. Results and discussion

This section is focused on the physical insight of different parameters on the velocity f ′(η), tem-
perature θ(η) and nanoparticle volume fraction profiles φ(η). Figure 1 indicates the effect of the
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power law index n on the velocity, temperature and nanoparticle volume fraction profiles. Here,
the velocity and the associated boundary layer thickness show reducing but the reverse behavior is
obtained for temperature and nanoparticle volume fraction profiles with larger values of the power
law index n. The effect of the magnetic parameter M on the velocity, temperature and nanoparticle
volume fraction profiles are shown in Figure 2. It is seen that the velocity is a decreasing function
of the magnetic field parameter M . It holds because with the increase in M , the Lorentz force
increases which produces the retarding effect on the fluid velocity. The effect of magnetic field
is to enhance the temperature and nanoparticle volume fraction profiles. Clearly, larger magnetic
parameter yields larger Lorentz force which causes strong resistance in the fluid motion. Hence,
more heat is produced which enhances the temperature and nanoparticle volume fraction profiles.
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Figure 1. Effect of n on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.
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Figure 2. Effect of M on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.

The effects of the suction/blowing parameter S on the velocity, temperature and nanoparticle vol-
ume fraction profiles have been analyzed and the results are presented in Figure 3. These figures
show that the suction/blowing has a profound effect on the boundary layer thickness in which the
suction reduces the thermal boundary layer thickness whereas blowing thickens it. However, the
net effect for the suction parameter is to slow down the flow velocity, temperature and nanoparticle
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Figure 3. Effect of S on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.
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Figure 4. Effect of We on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.
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Figure 5. Effect of γ on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.
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volume fraction but the reverse is true for the blowing parameter. So, we can conclude that the
suction can be effectively used for the fast cooling of the sheet. Figure 4 indicates the effect of the
Weissenberg number We on the velocity, temperature and nanoparticle volume fraction profiles. It
is observed that the velocity profile decreases by the increasing We. In fact, it is a ratio between
the shear rate time and the relaxation time. Hence, for larger Weissenberg numbers We, the fluid
becomes thicker, and consequently, the velocity and the boundary layer thickness decrease. Hence
velocity profile shows the decreasing behavior while temperature and nanoparticle volume frac-
tion profiles are increasing with increasing values of Weissenberg number We. Figure 5 gives the
insight for the influence of the angle of inclination on the velocity, temperature and nanoparticle
volume fraction profiles. It is noted that with the increase in γ, the velocity profile increases but
the reverse behavior is obtained for temperature and nanoparticle volume fraction profiles.
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Figure 6. Effect of L1 on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.
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Figure 7. Effect of N1 on (a) velocity and (b) temperature and nanoparticle volume fraction profiles.

The influence of the mixed convection parameter L1 on the velocity, temperature and nanoparti-
cle volume fraction profiles are presented in Figure 6. It shows that the velocity profile enhances
through the increase in the mixed convection parameter, as the mixed convection parameter is
the ratio of the buoyancy to inertial forces. Hence, for larger mixed convection parameters, the
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Figure 10. Effect of QH on temperature and
nanoparticle volume fraction profiles.
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Figure 11. Effect of Pr on temperature and
nanoparticle volume fraction profiles.

buoyancy force dominates the inertial force which increases the velocity of the fluid. Moreover,
the temperature and nanoparticle volume fraction profiles are decreasing with in increasing val-
ues of L1. Figure 7 displays the effect of the buoyancy parameter N1 on the velocity, temperature
and nanoparticle volume fraction profiles. It is found that the velocity profile and the momentum
boundary layer thickness are increasing functions of N1. The velocity profile shows the emerging
behavior near the wall but it increases away from the wall. From this figure the temperature and
nanoparticle volume fraction profiles are decreasing for larger values of N1. Figure 8 shows the im-
pact of convective parameter called Biot number Bi on the temperature and nanoparticle volume
fraction profiles. Physically Biot number is the ratio between convection at the surface and conduc-
tion within the surface of a body. It holds that both temperature and nanoparticle volume fraction
profiles are increasing with an increasing values of biot number. Figure 9 indicates the effect of the
thermal radiation parameter R on the temperature and nanoparticle volume fraction profiles. It is
seen that the temperature and nanoparticle volume fraction profiles are increasing functions of the
radiation parameter R. Figure 10 shows the influence of the heat source/sink parameter on the tem-
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perature and nanoparticle volume fraction profiles within the boundary layer. From this graph, it is
observed that the temperature and nanoparticle volume fraction profiles increase with an increase
in the heat source/sink parameter.

Figure 11 demonstrates the behavior of the Prandtl number Pr on the temperature and nanopar-
ticle volume fraction profiles. It is analyzed that the temperature and the thermal boundary layer
thickness decrease with an increase in the Prandtl number. In fact, the Prandtl number is the ra-
tio of the momentum diffusivity to the thermal diffusivity. The thermal diffusivity decreases for
larger Prandtl numbers. Hence, it causes the reduction in the temperature profile. Moreover from
this figure nanoparticle volume fraction profile is also decreasing with larger values of Pr. The be-
havior of the Brownian motion parameter Nb on the temperature and nanoparticle volume fraction
profiles are drawn in Figure 12. It is seen that the temperature profile is increasing but reverse be-
havior is obtained for nanoparticle volume fraction profiles with increasing values of the Brownian
motion parameter Nb. This is because that the random motion of the particles enhances by increas-
ing the Brownian motion parameter Nb and, as a result, the temperature profile increases. Figure
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Figure 16. Variation of skin friction with various
values of M , We and γ.
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Figure 17. Variation of skin friction with various
values of M , L1 and N1.
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Figure 19. Variation of Nusselt number with vari-
ous values of M , Pr and Nt.

13 gives the insight for the influence of the thermophoresis parameter Nt on the temperature and
nanoparticle volume fraction profiles. The increase in the thermophoresis parameter Nt leads to
the enhancement of both the temperature and nanoparticle volume fraction profiles. The difference
between the wall and reference temperatures increases for larger Nt, and the nanoparticles move
from hot region to cold region. Hence, the temperature profile increases. Figure 14 reveals the vari-
ation of temperature and nanoparticle volume fraction profile with coordinate η for various values
of Lewis number Le. It is clear from the figure nanoparticle volume fraction profile decreases with
an increase in Lewis number, but temperature profile increases. An increase in the values of Lewis
number Le corresponds to a weak Brownian diffusion coefficient which results in short penetration
depth for nanoparticle volume fraction profile. As a result a rise in Le the nanoparticle volume frac-
tion decreases. It is also noticeable that the nanoparticle volume fraction profile is affected more
even for small value of Lewis number Le.

In order to determine the impact of viscous forces at the surface, skin friction is analyzed in Figures
15, 16 and 17 with respect to the variation of suction/blowing parameter S, power law index n,
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magnetic parameter M , Weissenberg number We, inclination angle γ, mixed convection parameter
L1 and buoyancy parameter N1. It is observed that skin friction depicts the decreasing behavior
for both blowing and suction region. From these figures local skin friction is decreasing with
various values of power law index n, magnetic parameter M and Weissenberg number We but
reverse behavior for various values of inclination angle γ, mixed convection parameter L1 and
buoyancy parameter N1. In Figures 18 and 19, variation is obtained for local Nusselt number
with magnetic parameter, radiation parameter, heat source/sink parameter, Prandtl number and
thermophoresis parameter. It is seen that the local Nusselt number is decreasing with increasing
values of magnetic parameter, radiation parameter, heat source/sink parameter and thermophoresis
parameter, but reverse behavior is obtained for Prandtl number.

5. Conclusion

In this paper, we studied the effect of thermal radiation and heat source/sink on MHD boundary
layer flow of tangent hyperbolic nanofluid over an inclined stretching sheet with suction/blowing
and covective boundary condition. The main findings of this study are as follows:

• The surface temperature of a sheet increases with radiation parameter R. This phenomenon is
ascribed to a higher effective thermal diffusivity.

• Inclined angle γ enhances the velocity profile, but it decreases the temperature and nanoparticle
volume fraction profiles.

• Velocity profile decreases with increasing magnetic parameter M but temperature and nanoparti-
cle volume fraction profiles are increases in this case.

• The mixed convection parameter L1 enhances the velocity field, while it reduces the temperature
and nanoparticle volume fraction profiles.

• As the thermophoresis parameter Nt enhances, both temperature and nanoparticle volume frac-
tion profiles increases. The effect of Brownian motion Nb is to increase the temperature and
decrease the nanoparticle volume fraction profiles.

• The skin friction increases with the increasing values of mixed convection parameter L1 and
buoyancy parameter N1.

• The local Nusselt number decreases with the increasing values of radiation parameter R and
thermophoresis parameter Nt.
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