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Abstract 
 

In the present investigation, we studied the effects of heat source and Joule heating parameter on 

unsteady magneto-hydro-dynamic and heat transfer of a fluid flow over a radiating stretching 

sheet. The governing partial differential equations of nonlinear with boundary conditions are 

solved numerically by implicit finite difference method with Gauss Seidel iteration scheme. The 

obtained numerical solutions of velocity and temperature profiles are discussed and represented 

graphically. The effects of various parameters on the velocity and temperature profiles are shown 

graphically and numerical values of physical quantities such as the skin friction coefficient and 

the local Nusselt number are presented in tabular form. 
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1. Introduction 
 

The fluid flows over a stretching surface have a great application in the process of extrusion, 

paper production, etc. This is very complicated to comprehend the heat transfer and flow 

uniqueness of the process. So, the completed product meets the desired quality specifications. 
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Sakiadis (1961) explains the behavior of viscous fluid due to a moving surface. There are a lot of 

industrial processes are arose in the flows in porous media. That type of flows contribute to wide 

spread in industrial applications and in the natural phenomena which exist in the field of geo-

thermo-dynamics for the energy recovery, storage thermal energy, grain storage, etc. It is 

observed that there are so many authors are published several papers on the flow and stretching 

surfaces of heat transfer problems. In the fluid dynamics one of the major subject is the problem 

of unsteady and steady laminar flow over a permeable surface because of its importance from 

both practical point of view and theoretical has been broadly studied. The boundary layer fluid 

flows over a stretching surface has been investigated by some of the authors Keller and  Magyari  

(2000), Ishak et. al. (2009) and Cortell (2012) under the restrictive cases. Recently, Khader 

(2014), Srinivas Maripala (2016) studied about the boundary fluid flow and heat transfer over 

permeable surface with slip conditions and viscous dissipation. In the study of the present paper 

considered the effects of joule heating parameter and heat source on unsteady MHD flow over a 

radiating stretching sheet (2015).  

 

 2. Analysis of the flow problem 

Let us consider the boundary layer flow of unsteady, laminar two-dimensional flow past a 

continuously porous stretching sheet. The fluid is immersed in an incompressible electrically 

conducting. It is assumed that external unsteady flow and heat transfer at time t=0. The origin is 

fixed, the surface is impulsively stretched with velocity  𝑈∞(𝑥, 𝑡) along the x-axis, while y-axis 

is measured normal to the surface of the plate. The stretching velocity 𝑈𝑊(𝑥, 𝑡)and the surface 

temperature 𝑇∞(𝑥, 𝑡) are given by 

            

 𝑈∞(𝑥, 𝑡) = 𝑎𝑥/(1 − 𝑐𝑡) and 𝑇∞(𝑥, 𝑡) = 𝑇𝑤 + 𝑏𝑥/(1 − 𝑐𝑡) ,                                         (1) 

 

respectively, (a, b and c are constants with  𝑡𝑖𝑚𝑒−1 ). 

 

Governing equations of this problem can be written as  

  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ,                                                (2)         
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𝑄

ρCp
(T − 𝑇∞) +

𝜎𝐻2𝑢2

ρCp
  .             (4) 

Accompanied by the boundary conditions: 

             𝑈 = 𝑈𝑤 , 𝑉 = 0, 𝑇 = 𝑇𝑤 at  𝑦 = 0, 

             U= 𝑈𝑤 =  −𝑐𝑥 = 𝑣𝑤 , 𝑁 =  −𝑚
𝜕𝑢

𝜕𝑦
 , 𝑇 = 𝑇𝑤   𝐶 = 𝐶𝑤 at  𝑦 = 0 ,                                (5) 

 and               𝑈                 0,      𝑇                 𝑇∞  as   𝑦  tends to  ∞ . 
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In the x-axis and y- axis the velocity components  𝑢   and 𝑣  are taken.  The fluid temperature (T) 

in the boundary layer, t is time,  Kinematic fluid viscosity (𝑣(= µ/𝜌)), the dynamic viscosity(µ), 

the fluid density (ρ), the thermal diffusivity(α) ,  the specific heat at constant pressure (𝐶𝑝),  Heat 

source parameter (Q) and  the radiative heat flux ( 𝑞𝑟 ), To obtain similarity solution for  

Equations (2)-(5), the variable magnetic field and heat source parameter are assumed to be 

𝐵 = 𝐵0/√1 − 𝑐𝑡 and 𝑄 = 𝑄0/1 − 𝑐𝑡 respectively, (𝐵0 and 𝑄0 are constants). 

 

The radiative heat flux (𝑞𝑟), under Rosseland approximation, has the from  

 

             𝑞𝑟 =  (−
4𝜎∗

3𝑘∗) 𝜕𝑇4 𝜕𝑦⁄  .               (6) 

 

where, Stefan Boltzmann constant (𝜎∗) and 𝑘∗ is the absorption coefficient. Expanding 𝑇4 about 

𝑇∞ in Taylor’s series, we get  

 

              𝑇4 = 4 𝑇∞
3 𝑇 − 3 𝑇∞

4  , (neglecting higher orders)             (7) 

 

Substitute Equations (6) and (7) in Equation (4)  we get 

 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼(1 + 𝑅)

𝜕2𝑇

𝜕𝑦2 +
µ

ρCp
( 

𝜕𝑢

𝜕𝑦
 )2 +

𝑄

ρCp
(T − 𝑇∞) + J𝑢2 .          (8) 

 

The governing partial differential Equations (1) – (3) can be reduced to ordinary differential 

equations by introducing the following similarity transformation 

  

 𝜂 = 𝑦√
𝑈𝑤

𝑣𝑥
 ,    𝜓 = √𝑈𝑤𝑣𝑥𝑓(𝜂),  𝜃(𝜂) = (𝑇 − 𝑇∞)/(𝑇𝑤 − 𝑇∞),                       (9) 

 

The governing equations i.e., equation of continuity is satisfied for stream function 𝜓(𝑥, 𝑦) with 

the relations  

  

 𝑢 =
𝜕𝜓

𝜕𝑦
= (𝑎𝑥/(1 − 𝑐𝑡))𝑓ˈ(𝜂) , 𝑣 =  −

𝜕𝜓

𝜕𝑥
=  −√𝑣𝑎/(1 − 𝑐𝑡)𝑓(𝜂).        (10) 

 

The equations of the problem defined by (2), (3), (8) and boundary conditions (5) are, then 

transformed into a set of ordinary differential equations as follows:  

 

            𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 − 𝑀𝑓′ − 𝐴 (𝑓′ +
1

2
𝜂𝑓′′) = 0,            (11) 

           (1 + 𝑅)𝜃′′ + Pr(𝑓𝜃′ − 𝑓′𝜃) − PrA (θ +
1

2
𝜂𝜃′) + Pr(Ec ( 𝑓′′

2) + 𝛾𝜃) + 𝐽𝑢2 =  0 .      (12) 

 

Then, the boundary conditions are 

 

 𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1  at 𝜂 = 0, 

 

         𝑓′(𝜂)  tends to 0, 𝜃(𝜂) tends to 0  as     𝜂   tends to  ∞  ,                    (13) 
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where prime denote differentiation with respect to η.  

 

A(Unsteady parameter), = 𝑐/𝑎 , 𝑀(Magnetic Parameter) =
𝜎𝑩𝟎

𝟐

𝜌𝑎
  ,  

         

            𝐸𝑐(Eckert Number) = 𝑈𝑤
2 /𝑐𝑝(𝑇𝑤 − 𝑇∞),    γ(Heat source parameter )  =  Q0/𝜌𝑐𝑝𝑎,  

 

            𝑃𝑟(Prandtal number) = 𝑣/𝛼,   𝐽(joule heating parameter) =
𝜎𝐻2𝑣𝐺𝑟1/2

ρCp(𝑇𝑤−𝑇∞)
  , 

 

 𝐺𝑟(Grashff number) =  
𝑔𝛽𝑙3(𝑇𝑤−𝑇∞)

𝑣2  . 

 

Physical quantities are: 

 

  Skin friction coefficient( 𝐶𝑓 = 2𝜏𝑤/𝜌𝑈𝑤
2  ) , 

 

Local Nusselt number ( 𝑁𝑢𝑥 = 𝑥𝑞𝑤/𝑘(𝑇𝑤 − 𝑇∞) ), and  

 

Local Reynolds number( 𝑅𝑒𝑥 = 𝑈𝑤𝑥/𝜈 ). 

 

3. Numerical Solution 

 
The non-linear ordinary differential equations (11) and (12) subject to the boundary conditions 

(13) is solved numerically by implicit finite difference method with Gauss Seidel scheme with 

the Thomas algorithm. The convergence of the method depends on the choice of the initial 

guesses. The step size 0.01 is used to obtain the numerical solution with five decimal place 

accuracy as the criterion of convergence. From the process numerical computation, the Skin 

friction coefficient and Nusselt number which are respectively proportional to𝑓ˈˈ(0) and −𝜃ˈ(0) 

are presented in tabular form. 

 

 Table 1. Values of - 𝜃′ (0) for various values of A, M, R, Pr and J 

A M R J Pr MGR(16) Present 

0 0 0 0.01 0.72 0.8086308 0.8086302 

    1 1.0000000 1.000000 

0 1 0 0.01 0.72 0.6897110 0.6856221 

    1 0.8921452 0.8922433 

1 0 0 0.01 0.72 1.0832785 1.0832685 

    1 3.7645541 3.7654932 

1 1 0 0.01 0.7 1.0499175 1.0498256 

    1 3.7136611 3.7145612 

1 1 1 0.01 0.7 0.7086420 0.7086420 

    1 0.8678333 0.8678321 
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Table 2. Skin friction and Nusselt number for various values of A, M, R, Pr, γ, J 

A M R Pr Ec γ J - 𝜃′′(0) - 𝑓′′ (0) 

0.5 0.5 0.5 0.72 0.1 0.1 0.01 0.654321 1.345962 

    0.5   0.558062 1.345623 

   1.0 0.1 0.1 0.001 0.807738 1.345644 

   3.0    1.532340 1.345956 

 1.0  0.72 0.1 0.1 0.001 0.636588 1.498564 

 3.0      0.61452 1.569852 

  1.0     0.556213 1.345666 

  2.0     0.485652 1.345898 

1.0       0.800365 1.497214 

2.0       0.911452 1.619581 

      0.001 0.455212 1.349621 

      1.000 0.345982 1.375123 

 

4. Results 

The governing Equations (11) and (12) subjects to the boundary conditions represented in the 

Equation (13) are solved numarically. The numerical values of the velocity, temperature, local 

skin friction coefficients and rate of heat transfer are obtained for different values of  Unsteady 

parameter A, magnetic parameter M, Radiation parameter R, Joule heating parameter J and heat 

in generation parameter γ for a Prandtl number 0.73. Detailed numerical results for the velocity, 

temperature are explained graphically in Figures 1-11 respectively. Local skin friction 

coefficients and rate of heat transfer associated with the different values of related parameters are 

shown in tabular form.  

 

From table 1 the heat transfer coefficient increases with an increase of Prandtl number. Effects of 

MHD parameter M, unsteady parameter A and joule parameter J on Skin friction coefficient 

𝑓′′(0) and Nusselt number 𝜃′′(0 are shown in table 2. It is noticed that as the radiation parameter 

R increases the magnitude of the Nusselt number −𝜃′′(0) decreases. It is observed that as the 

Prandtl number Pr increases the magnitude of the Nusselt number −𝜃′′(0) increases. But Skin 

Friction Coefficient remains constant with increasing values of Radiation Parameter and Prandtl 

Number. Joule parameter J, increase the Skin friction coefficient values and decrease the Nusselt 

number values. 

 

From Figures 1, 2 and 3 observed that the effects of MHD parameter M, unsteady parameter A 

and Joule parameter J on the velocity profiles. As expected, the velocity profiles increase with 

the increase in M. When M increases, it will also increase the velocity profiles. Thus, the rate of 

heat transfer at the surface decreases with the presence of magnetic parameter and unsteadiness 

parameter. From figure 3, Joule heating parameter J increase the velocity profiles as it increases. 

 

Figures 4 and 5 depict temperature profiles for various values of Prandtl number Pr and 

Unsteadiness parameter A. It is noticed that an increase in Pr results a decrease of the thermal 

boundary layer thickness. Figures 4 and 5 show that the thermal boundary layer thickness 
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decreases as Pr or A increases with increasing temperature gradient at the surface. Thus, the heat 

transfer rate at the surface increases with increasing values of Pr or A.  

 

The temperature profile for various values of magnetic parameter M, radiation parameter R, 

Eckert number Ec, and heat source parameter Q are presented in Figures 6–8 respectively. Figure 

6 and 7 show effects of magnetic parameter M and radiation parameter R on the temperature 

profiles respectively. From these figures it can be seen that the absolute value of the temperature 

gradient at the surface decreases with an increase in M or R. So, the heat transfer rate at the 

surface decreases as M or R increases. As R increases the temperature profile also increases.  

 

Figure 8 shows the effect of viscous dissipation parameter Ec on temperature profile. As Ec 

increases, the temperature profile also increases; The Temperature profiles for various values of 

heat source parameter γ are presented in Figure 9. As γ increases, the temperature profiles also 

increase. It can be seen that the absolute value of temperature gradient at the surface decreases 

with an increase in M, R, Ec and heat source parameter γ. 

 

Figure 10 represents the effect of Joule heating parameter J on temperature field while 

controlling parameters are MHD parameter M, Radiation parameter R and heat source parameter 

Q. As Joule heat parameter produce temperature in the conductor therefore temperature of the 

fluid increase associated with the increasing values of Joule parameter J. 

 

5. Conclusion 

 
The governing equations and subject to the boundary conditions represented in the equation and 

are solved numerically. The numerical values of the velocity, temperature, local skin friction 

coefficients and rate of heat transfer are obtained for different values of parameters. Specially, 

Joule heating parameter on temperature field while controlling parameters are MHD parameter, 

Radiation parameter and heat source parameter. As Joule heat parameter produce temperature in 

the conductor therefore temperature of the fluid increase associated with the increasing values of 

Joule parameter. 
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Figure 1. Velocity profiles for different values of  A 
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Figure 2. Velocity profiles for different values of M 

 

 

Figure 3. Velocity profiles for different values of J 

 

 

Figure 4. Temperature distribution for various values of  Pr 
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Figure 5. Temperature distribution for various values of  A 

 

Figure 6. Temperature distribution for various values of M 

 

Figure 7. Temperature distribution for various values of  R 
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Figure 8. Temperature distribution for various values of Ec 

 

Figure 9. Temperature distribution for various values of γ 

 

Figure 10. Temperature distribution for various values of J 
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