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Abstract

This article presents the two-dimensional MHD flow of tangent hyperbolic fluid with zero normal
flux of nano-particles over an exponentially stretching sheet in presence of thermal radiation. The
governing system of non-linear partial differential equations along with boundary conditions for
this fluid flow is converted into a system of non-linear ordinary differential equations by using
appropriate similarity transformations. The reduced system is numerically solved by Runge-Kutta
fourth order method with shooting technique. The effects of emerging non-dimensional parameters
on velocity, temperature and nanoparticle volume fraction profiles have been discussed and pre-
sented graphically. Furthermore, the impacts of these parameters on skin friction coefficient and
local Nusselt number at the sheet are exhibited and discussed. Noticed that the thermal boundary
layer thickness enhanced with the increase in Weissenberg number, power-law index and radiation
parameter whereas the velocity profiles and the skin friction coefficient decreases with an increase
in Weissenberg number and power-law index.
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1. Introduction

In recent years, the study of boundary layer flow over a stretching sheet has lot of importance due to
its numerous applications in industrial manufacturing processes such as wire drawing, hot rolling,
manufacturing of plastic and rubber surfaces and many others. In all these cases both stretching
and simultaneous cooling or heating have a decisive influence on the quality of the final products.
Probably Sakiadis (1961) was the first who studied the boundary layer flow over a continuous
solid surface moving with constant velocity. Crane (1970) extended this concept to the steady
two-dimensional viscous fluid flow over a linearly stretching sheet and obtained a similar solution
for the problem. Wang (1990) discussed the unsteady laminar flow of viscous fluid and computed
similarity solutions. Later Magyari et al. (1999) investigated the steady boundary layer flow on
a continuous stretching surface with exponential temperature distribution. Plenty of literature has
been produced by researchers on boundary layer flows over stretching sheet.

The study of the magnetohydrodynamic (MHD) flow of an electrically conducting fluid is of con-
siderable interest in modern metallurgical and metal-working processes. The process of fusing of
metals, power generation systems and cooling of nuclear reactor are good examples of such fields.
In biomedical field, MHD flow has many practical applications such as magnetic field effects on
wound healing and MRI (Magnetic Resonance Imaging) to diagnose disease and surgical proce-
dures. Many investigations were made to examine the effects of MHD flow over a stretching sheet
under different aspects. Shankar et al. (1997) studied the effects of mass transfer on the MHD
flow past an impulsively started infinite vertical plate with variable temperature or constant heat
flux. Recently, Anderson (2002), Ishak et al. (2010), Hayat et al. (2011) and Madhu et al. (2016)
produced some important literature on MHD flow over a stretching sheet.

An extensive research has been conducted on boundary layer flow and heat transfer over an expo-
nentially stretching sheet due to its wider applications in technology. For instance, in the case of
annealing and tinning of copper wires and many others. Many kinds of literature are also available
on boundary layer flow over a stretching surface where the velocity of the stretching surface is
assumed to be linearly proportional to the distance from the fixed origin. However, Gupta et al.
(1977) argued that realistically stretching of plastic sheet may not necessarily be linear. Magyari
et al. (1999) investigated the mass and heat transfer in the boundary layers over an exponentially
stretching surface with an exponential temperature distribution both analytically and numerically.
In the recent past many researchers like Odat et al. (2006), Akram et al. (2009), Gangaiah et al.
(2018) investigated various effects of heat and mass transfer over an exponentially stretching sheet.

The term nanofluid means a liquid suspension containing ultra-fine particles (diameter less than
50 nm). Experiments have shown that thermal conductivity can be appreciably improved by incor-
porating nanoparticles in the base fluid Metals (Al, Cu) such as oxides (Al2O3), carbides (SiC),
nitrides (AlN , SiN) or nonmetals (graphite, carbon nanotubes) contain these nanoparticles. The
term “nanofluid” was proposed by Choi, referring to dispersions of nanoparticles in the base flu-
ids such as water, ethylene glycol, and propylene glycol. Choi (1995) showed that the addition
of a small amount (less than 1 percent by volume) of nanoparticles to conventional heat transfer
liquids increased the thermal conductivity of the fluid up to approximately two times. The ther-
mal conductivity enhancement characteristic of nanofluid was observed by Masuda et al. (1993).



18 T. Gangaiah et al.

Buongiorno (2006) discussed the reasons behind the enhancement in heat transfer for nanofluid
and he found that Brownian diffusion and thermophoresis are the main causes for enhancement
in thermal boudary layer. Later, Nield et al. (2009) investigated the natural convective boundary
layer flow of a nanofluid employing Buongiorno model. Angayarkanni et al. (2015) reviewed on
thermal properties of nanofluieds. Recently, CS Reddy et al. (2017), Saidulu et al. (2018) and many
other investigated the MHD flow of nanofluid over an exponentially stretching sheet using several
methods.

Extensive research work has been conducted on non-Newtonian fluids to analyze the thermo-
physical characteristics due to their numerous industrial and technological applications. The clas-
sical Navier-Stokes equations are inadequate to understand the distinctive properties of non-
Newtonian fluids. Due to the diversity of non-Newtonian fluids, there is no unique model available
to analyze the entire behaviour of non-Newtonian fluids. Among several non-Newtonian models,
the tangent hyperbolic fluid model is one of the important fluid models. From laboratory exper-
iments, it is found that this model predicts shear thinning phenomenon very precisely. Ketchup,
whipped cream, blood, printer ink, paint and nail polish are some examples of tangent hyperbolic
fluids. Pop et al. (2001) presented the hyperbolic tangent fluid model in his e-book Convective
heat transfer : Mathematical and Computational Modelling of Viscous Fluids and Porous media
and it is extensively used in different laboratory experiments. Akram et al. (2009) discussed the
peristaltic flow of hyperbolic tangent fluid through an asymmetric channel. Numerical solutions of
MHD boundary layer flow of tangent hyperbolic fluid over stretching sheet was deliberated by Ak-
bar et al. (2013). Recently, Prabhakar et al. (2016) discussed the effects of inclained Lorentz forces
on hyperbolic tangent nanofluid over a stretching sheet with passive flow of nanoparticles. Due to
its wide range of applications, many researchers studied various effects on a tangent hyperbolic
fluid in recent years.

The aim of the present work is to establish the influence of thermal radiation on magnetohydrody-
namic flow of tangent hyperbolic fluid over an exponentially stretching surface with zero normal
flux of nanoparticles. In order to achieve this aim, the present paper is organized as follows: The
tangent hyperbolic fluid model is described in Section 2. The fluid flow model explained in Sec-
tion 3 and how the governing non-linear partial differential equations transformed to a non-linear
ordinary differential equation with suitable similarity transforms explained in Section 4, method of
solution. Section 5 explains how we solved the resulting system of ODE with boundary conditions
using Runge-Kutta method with shooting technique. We analysed both the numerical and graphical
results in Section 6. The key findings of the present work manifested in Section 7.

2. Tangent hyperbolic fluid model

The constitutive equations for tangent hyperbolic fluid (Pop et al. (2001), Akram et al. (2009)) is
given by

S = −P I + τ, (1)
τ = − [ µ∞ + (µ0 + µ∞) tanh(Γ¯̇γ)n ] ¯̇γ. (2)

In the above equations, τ is extra stress tensor, µ0 is the zero shear rate viscosity, µ∞ is the
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infinite shear rate viscosity, Γ is the time-dependent material constant, n is the power law index
and ¯̇γ defined as

¯̇γ =

√
1

2

∑
i

∑
j

¯̇γij ¯̇γji =

√
1

2
Π, (3)

where Π = 1
2 trac

[
gradV + (gradV )T

]2, which is defined as second invariant strain tensor. Con-
sider the equation (2) for the case when µ∞ = 0, because it is not possible to discuss the problem for
the infinite shear rate viscosity and since we considering the tangent hyperbolic fluid that describes
shear thinning effects so Γ¯̇γ << 1. Then, equation (2) becomes,

τ = −µ0

[
(Γ¯̇γ)

n ] ¯̇γ

= −µ0

[
(1 + Γ¯̇γ − 1)

n ] ¯̇γ

= −µ0 [ 1 + n (Γ¯̇γ − 1) ] ¯̇γ.

(4)

3. Mathematical Formulation

Consider the steady, laminar, two-dimensional boundary layer incompressible flow of an electri-
cally conducting tangent hyperbolic fluid with zero normal flux of nanoparticles over an exponen-
tially stretching sheet coinciding with the plane y = 0 and the flow is confined to y > 0. The x-axis
is taken along the stretching surface in the direction of the motion while the y-axis is perpendicular
to it. Keeping the origin fixed, the sheet is then stretched with a velocity (Uw) varying linearly with
the distance from the slit and Tw as the temperature at the surface. To neglect the gravitational
effects, the mass flux of the nanoparticle at the wall is assumed to be zero. A variable magnetic
field B = B0e

x

2L is applied to the sheet, where B0 is the initial strength of the magnetic field. Under
these considerations, the governing equations of continuity, momentum, energy and concentration
( Akbar et al. (2013), Prabhakar et al. (2016)) are written as follows:

∂u

∂x
+
∂v

∂y
= 0, (5)

u
∂u

∂x
+ v

∂u

∂y
= ν(1− n)

∂2u

∂y2
+
√

2nνΓ

(
∂u

∂y

)(
∂2u

∂y2

)
− σB2u

ρ
, (6)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

1

ρcp

∂qr
∂y

+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
, (7)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
. (8)

The boundary conditions associated with the problem are

u = Uw, v = Vw, T = Tw, DB
∂C
∂y + DT

T∞
∂T
∂y = 0 at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.
(9)

In the above equations, u and v are velocity components in the x and y directions respectively, T
is the fluid temperature, C is the concentration of the fluid, ν = µ

ρ is the kinematic viscosity, µ
is the coefficient of the viscosity, ρ is the fluid density, n is the power-law index, Γ is the time-
dependent material constant, σ is the electrical conductivity, B = B0e

x

2L is the variable magnetic
field, α = k

ρcp
is the thermal diffusivity of the fluid (where k is thermal conductivity and cp is the
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specific heat at constant pressure), qr is the radiative heat flux, τ =
(ρc)p
(ρc)f

is the ratio of heat capac-
ities of nanofluid (ρc)p and base fluid (ρc)f and DB, DT are Brownian, thermophoretic diffusion
coefficients, respectively.

Also, Uw = U0e
x

L is the stretching velocity, U0 is the reference velocity, L is the characteristic
length. Vw > 0 is the velocity of suction and Vw < 0 is the velocity of blowing and Vw = −v0e

x

2L

is a special type of velocity on the wall, where v0 is the initial strength of the suction, Tw =

T∞ + T0e
x

2L is the variable temperature at sheet with T0 being a constant which measures the rate
of temperature increase along the sheet T∞ is the ambient fluid temperature and C∞ is the ambient
fluid concentration.

According to Roseland’s approximation for radiation (Brewster (1992)), the radiative heat flux qr
is simplified as

qr = −4σ∗

3k∗
∂T 4

∂y
, (10)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the absorption coefficient. Assume that the
temperature differences, such as the term T 4 within the flow, may be expressed as a linear function
of temperature. After neglecting higher-order terms, Taylor series expansion for T 4 about T∞ we
have

T 4 ∼= 4T∞
3T − 3T∞

4. (11)

By using (10) and (11), we get

qr = −16σ∗T∞
3

3k∗
∂T

∂y
. (12)

4. Method of Solution

To illustrate the problem, we introduced the following similarity transformations to derive a system
of ordinary differential equations from the given system of non-linear partial differential equations:

ψ(x, y) =
√

2U0νL e
x

2L f(η), η(x, y) =

√
U0

2νL
e

x

2L y,

θ (η) =
T − T∞
T0

e
−x

2L , φ (η) =
C − C∞
C0

,

where η is the similarity variable, f(η), θ(η) and φ(η) are dimensionless stream, temperature and
concentration functions respectively. Here, the continuity equation is satisfied by choosing a stream
function ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

and hence,

u = U0 e
x

L f ′, v = −
√
U0ν

2L
e

x

2L (η f ′ + f).
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By substituting above transformations, (6) - (8) can be transformed into a system of ordinary
differential equations such as,[

(1− n) + n We f ′′
]
f ′′′ + ff ′′ − 2

(
f ′
)2 −M f ′ = 0, (13)

1

Pr

(
1 +

4R

3

)
θ′′ + θ′f − f ′θ +Nb(θ′φ′) +Nt

(
θ′
)2

= 0, (14)

φ′′ + Pr Le φ′ f +
Nt

Nb
θ′′ = 0. (15)

The corresponding dimensionless boundary conditions take the form

f(η) = S, f ′(η) = 1, θ(η) = 1, φ′(η) = −Nt
Nbθ

′(η) at η = 0 and
f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η →∞.

(16)

Here, the primes denote differentiation with respect to η, We = ΓU0

3
2 e

3x
2l

νL is the Weissenberg num-
ber, M = 2LσB2

0

U0ρ
is the magnetic field parameter, Pr = µcp

k = ν
α is the Prandtl number, R = 4σ∗T∞3

kk∗

is the radiation parameter, Nt = τDT (Tw−T∞)
T∞ν

is the thermophoresis parameter, Nb = τ DB Cw

ν is the

Brownian motion parameter, Le = α
DB

is the Lewis number and S = v0

√
2L
νU0

> 0 (or S < 0) is the
suction (or blowing) parameter.

The important physical quantities of this problem are the skin friction coefficient Cfx and the local
Nusselt number Nux which represents wall shear stress and the heat transfer rate respectively and
they are defined as

Cfx =
τw

ρ Uw
2 , Nux =

x qw
k(Tw − T∞)

. (17)

Here, τw , qw represent wall shear stress, heat transfer rate at the surface of sheet respectively, and
these quantities are defined as

τw = µ
[

(1− n)(∂u∂y ) + n Γ√
2

(∂u∂y )2
]
y=y0

,

qw = −k(∂T∂y )y=y0 .
(18)

After using similarity variables, the skin friction coefficient and local Nusselt number transformed
to

(Rex)
1

2Cfx =

√
x

2L

[
(1− n)f ′′(0) +

n

2
We (f ′′(0))2

]
, (19)

(Rex)
−1

2 Nux =

√
x

2L

[
−θ′(0)

]
. (20)

Here, Rex = x Uw

ν is a local Reynolds number.

5. Numerical Method

The above equations (13) - (15) along with the boundary conditions (16) are highly nonlinear
ordinary differential equations. In order to solve these equations numerically, we used Runge-
Kutta fourth order method along with shooting technique which is described in Dulal (2010). Here
it is important to choose the appropriate finite values of η →∞. In order to determine η∞, we start
with some initial guess value for some particular set of physical parameters to obtain f ′′(0) and
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θ′(0). Now use the following set of variables to reduce above set of differential equations (13) -
(15) along with the boundary conditions (16) into a system of first-order differential equations.

f = f1, f ′ = f2, f ′′ = f3,

θ = f4, θ′ = f5, φ = f6, φ′ = f7.
(21)

With these variables, we get the system of first-order differential equations as

f1
′ = f ′ = f2, (22)

f2
′ = f ′′ = f3, (23)

f3
′ = f ′′′ =

[ 2(f2)2 − f1 f3 +M f2 ]

[ (1− n) + n We f3 ]
, (24)

f4
′ = θ′ = f5, (25)

f5
′ = θ′′ =

−Pr
(1 + 4R

3 )
[ f1 f5 − f2 f4 +Nb f5 f7 +Nt(f5)2 ], (26)

f6
′ = φ′ = f7, (27)

f7
′ = φ′′ = −[ Pr Le f1 f7 +

Nt

Nb
f5
′ ]. (28)

The boundary conditions are modified as

f1 = S, f2 = 1, f4 = 1, f7 = −Nt
Nb f5 at η = 0 and

f2 → 0, f4 → 0, f6 → 0 as η →∞.
(29)

In order to solve the system of equations (13) - (15) along with boundary conditions (16), we
requires a value for f ′′(0), θ′(0) and φ′(0). But no such value is given at the boundary. We chosen
suitable guess functions for f(η), θ(η) and φ(η) to calculate the values of f ′′(0), θ′(0) and φ′(0) in
MATLAB algorithm for Runge-Kutta method with shooting technique with step size ∆η = 0.01.
We compared the calculated values of−θ′(0) with existing results. The above procedure is repeated
until we get the converged results within a tolerance limit of 10−5.

6. Results and Discussion

In order to study, the behaviour of velocity, temperature and nanoparticle volume fraction profiles
along with physical quantities skin friction coefficient (Cfx) and local Nusselt number (Nux) for
various values of the governing parameters namely, the magnetic field parameter (M), the suction
parameter (S), the Prandtl number (Pr), the Lewis number (Le), Brownian motion parameter (Nb),
thermophoresis parameter (Nt), the Weissenberg number (We), the radiation parameter (R) and the
power-law index (n), we used the Runge-Kutta fourth order method with shooting technique and
computed the numerical computations using MATLAB program and the results are reported in
terms of Table 1 and graphs as shown in Figures 1-20. For numerical results and plotting graphs,
we used M = S = R = n = 0.1, P r = 2.5, Le = 1, Nt = Nb = 0.5 and We = 0.3. These values are
treated common throughout the study except the varied values in respective figures and tables. To
establish the numerical accuracy, for various values of Pr and the values of [−θ′(0)] are compared
with the existing results in Table 1 in absence of nanofluid, magnetic field, viscous dissipation and
suction and those are found in excellent agreement.
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Table 1. Comparison of [−θ′(0)] for several values of Prandtl number Pr and radiation parameter R in absence of
nanofluid with M = S =We = n = 0 and Le = 1

Pr R Bidin et al. (2009) Ishak et al. (2010) Swathi (2013) Present results
1 0 0.9547 0.9548 0.9547 0.9548
2 0 1.4714 1.4715 1.4714 1.4715
3 0 1.8691 1.8691 1.8691 1.8691
1 0.5 0.6765 0.6775
2 0.5 1.0735 1.0735 1.0735
3 0.5 1.3807 1.3807 1.3807
1 1 0.5315 0.5312 0.5311 0.5353
2 2 0.8627 0.8626 0.8629
3 3 1.1214 1.1214 1.1214

Here, we discussed the graphical outcomes of the problem in a physical sense. The influence of
magnetic field parameterM on the dimensionless velocity and temperature are shown in Figures 1 -
2, respectively. It is clear from the Figure1 that an increase in the magnetic field parameter reduces
the velocity boundary layer. The magnetic field opposes the transport process. Actually, due to the
increase inM leads to the increase of the Lorentz force and it produces much more resistance to the
transport phenomena. It is also observed that from Figure 2, the temperature profiles increase with
an increase in M . The Lorentz force has the tendency to increase the temperature in nanofluid mo-
tion. Consequently, the thermal boundary layer thickness become thicker for a stronger magnetic
field. Figures 3 and 4 depict the influence of the suction parameter S on velocity and temperature
profiles. It is evident from the figures that an increase in suction parameter decrease the velocity
and temperature boundary layers. Due to the suction, the fluid is brought closer to the sheet and it
thins velocity boundary layer thickness as well as thermal boundary layers thickness.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

η

f ′ (η
)

 

 
M=1
M=2
M=3
M=4

Figure 1. Velocity profiles for various
values of M
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Figure 2. Temperature profiles for
various values of M

Figures 5 and 6 illustrates the influence of Weissenberg numberWe on velocity and thermal bound-
ary layers, respectively. Weissenberg number compares the viscous forces to the elastic forces. It
is usually given by the relation of stress relaxation time of the fluid and a specific process time.
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The increment in We increases the stress relaxation time of the fluid which increases the resistance
of the flow and hence decreases the velocity boundary layer. Due to that viscoelastic forces as We

increases the temperature boundary layer thickness increases. The effect of the power-law index n
on the dimensionless velocity and temperature profiles are shown in Figures 7 and 8, respectively.
It is observed that the increase in power-law index reduces the velocity profile since as n increases
the fluid nature changes from shear thinning to shear thickening. It is seen from Figure 8 that the
temperature increases with the increase of n.
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Figure 3. Velocity profiles for various
values of S
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Figure 4. Temperature profiles for
various values of S
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Figure 5. Velocity profiles for various
values of We
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Figure 6. Temperature profiles for
various values of We

The effect of the Prandtl number Pr on the temperature and nanoparticle volume fraction are
depicted in Figures 9 and 10, respectively. The increase in Pr decreases the thermal diffusivity and
hence reduces the thermal boundary layer thickness. The concentration boundary layer exhibits
overshoot near the sheet for higher values of Pr, though the concentration boundary layer thickness
reduces. Figure 11 explains the effect of radiation parameter R on thermal boundary layer. from
graph, it is observed that the increase in R increases the temperature boundary layers. This result
is expected because the presence of thermal radiation works as a heat source and so the quantity of
heat added to the flow. The effect of Lewis number Le on the dimensionless nanoparticle volume
fraction is plotted in Figure 12. It reveals that the concentration boundary layer thickness increases
initially and later decreases as Le value increases.



AAM: Intern. J., Special Issue No. 4 (March 2019) 25

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

η

f ′ (η
)

 

 
n=0.1
n=0.2
n=0.3
n=0.4

Figure 7. Velocity profiles for various
values of n
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Figure 8. Temperature profiles for
various values of n
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Figure 9. Temperature profiles for
various values of Pr
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Figure 10. Nanoparticle volume frac-
tion profiles for various
values of Pr
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Figure 11. Temperature profiles for
various values of R
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Figure 12. Nanoparticle volume frac-
tion profiles for various
values of Le



26 T. Gangaiah et al.

The impact of thermophoresis parameter Nt on temperature and concentration profiles is depicted
in Figures 13 and 14, respectively. With an increase of Nt, it increases thermophoretic force which
tends to move nanoparticles from hot to cold areas and hence, it increases the magnitude of tem-
perature profiles. With an increment in Nt, the concentration boundary layer thickness increases
and the overshoot near the wall is found. The effect of Brownian motion parameter Nb on the tem-
perature and concentration are plotted in Figures 15 and 16, respectively. Due to the presence of
nanoparticles in base fluid Brownian motion takes place and their collision with the fast-moving
molecules in the fluid. Consequently the heat transfer characteristic of the fluid increases. Also,
when the value of Nb increases, diffusion takes place and hence the concentration boundary layer
thickness decreases.
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Figure 13. Temperature profiles for
various values of Nt
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Figure 14. Nanoparticle volume frac-
tion profiles for various
values of Nt
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Figure 15. Temperature profiles for
various values of Nb
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Figure 16. Nanoparticle volume frac-
tion profiles for various
values of Nb

Now, we discuss the variations of the physical quantities of engineering importance, that is, the skin
friction coefficient [Cfx] and the local Nusselt number [Nux] for various values of S,M ,R,We and
n. Here the quantities f ′′(0) and −θ′(0) are related to the skin friction coefficient and the local Nus-
selt number, respectively. Figure 17 represents the behaviour of the skin friction coefficient [f ′′(0)]
with suction parameter S for three different values of Weissenberg number (We = 0.5, 1, 1.5). It is
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found that skin friction coefficient decreases with an increase in S as well as an increase in We.
Figure 18 displays the variation in skin friction coefficient [f ′′(0)] with magnetic field parameter
M for three different values of power-law index (n = 0.1, 0.2, 0.3). from that graph, skin friction
coefficient increases with an increase in M and n. Figures 19 and 20 explains the change in local
Nusselt number [−θ′(0)] with radiation parameter R for three different values of power-law index
(n = 0.1, 0.2, 0.3) and Weissenberg number (We = 0.5, 1, 1.5), respectively. From that, we conclude
that local Nusselt number decrease as an increase in R and n as well as We.
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Figure 17. Variation in skin friction
coefficient [f ′′(0)] for var-
ious values of S and We
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Figure 18. Variation in skin friction
coefficient [f ′′(0)] for var-
ious values of M and n
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7. Conclusions

In this paper, we numerically investigated the influence of thermal radiation and inclined magnetic
force on hyperbolic tangent nanofluid with zero normal flux over an exponentially stretching sheet.
In addition, heat source/sink parameter and thermal radiation parameters have been considered for
the flow to analyze velocity, temperature and nanoparticle volume fraction profiles as well as the



28 T. Gangaiah et al.

skin friction coefficient and Nusselt number. The important findings of the present study are as
follows:

• The velocity of the fluid, skin friction coefficient and Nusselt number reduced with increasing
values of Weissenberg number while it increases the temperature.

• Increase in the magnetic field generates strong Lorentz force and hence it decreases the velocity
of the fluid and increases the temperature profiles.

• Due to the suction, the fluid is brought closer to the sheet and it thins velocity boundary layer
thickness as well as thermal boundary layers thickness.

• The temperature of the fluid enhanced with the radiation parameter, Lewis number, power-law
index, thermophoresis parameter and Brownian parameter whereas decreases with Prandtl num-
ber.

• The concentration boundary layer thickness decreases with Brownian motion parameter, Prandtl
number and Lewis number and increases with thermophoresis parameter.

• The skin friction coefficient [f ′′(0)] decreases with an increase in magnetic field parameter, Weis-
senberg number, power law index and suction parameter.

• The local Nusselt number [−θ′(0)] increases with an increase Weissenberg number, magnetic
field parameter and power-law index.
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