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Abstract

In this study, we consider some properties of weighted variable exponent Lebesgue and amalgam
spaces. It is known these spaces are considerably used in harmonic and time-frequency analysis
including elastic mechanics, electrorheological fluids, image processing, etc. Ergodic theory inves-
tigates the long-term averaging properties of measure preserving dynamical systems. This theory
has also several applications and problems of statistical physics and mechanics. Moreover, it has
influence on many areas of mathematics, especially probability theory and dynamical systems as
well as Fourier analysis, functional analysis, and group theory. Therefore, we investigate Ergodic
theorem for unweighted variable exponent Lebesgue spaces and also an amalgam space whose
local component is weighted one.
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1. Introduction

The variable exponent Lebesgue spaces Lp(.) appeared in literature for the first time in 1931 with an
article written by Orlicz. Kováčik and Rákosník (1991) presented the variable exponent Lebesgue
space Lp(.)(Rd) and the variable exponent Sobolev space W k,p(.)(Rd). It is known that the variable
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exponent Lebesgue spaces Lp(.)
(
Rd
)

and the classical Lebesgue spaces Lp
(
Rd
)

have many similar
properties such as Banach space, reflexivity, separability, uniform convexity, Hölder inequalities
and embeddings. However, a crucial difference between Lp(.)(Rd) and Lp(Rd) is that the variable
exponent Lebesgue space is not invariant under translation in general (see (Diening (2004), Lemma
2.3) and (Kováčik and Rákosník (1991), Example 2.9)). For a historical journey, we refer Diening
et al. (2004), Fan and Zhao (2001), Kováčik and Rákosník, (1991), Musielak (1983) and Samko
(2005). Moreover, the Young theorem ‖f ∗ g‖p(.) ≤ ‖f‖p(.) ‖g‖1 is not valid for f ∈ Lp(.)

(
Rd
)

and
g ∈ L1

(
Rd
)
. The boundedness of the maximal operator was an open problem in Lp(.)(Rd) for a

long time. Diening (2004) proved this boundedness over bounded domains where p(.) is locally
log-Hölder continuous, that is,

|p(x)− p(y)| ≤ C

− ln |x− y|
, x, y ∈ Ω, |x− y| ≤ 1

2
.

He later extended the boundedness to unbounded domains under some condition with respect to
behaviour of the exponent p(.). After this study, many interesting and important papers appeared
in non-weighted and weighted variable exponent spaces. Moreover, Aoyama (2009) studied on
variable exponent Lebesgue spaces with respect to probability spaces.

Assume that G is a locally compact abelian group with Haar measure µ. For 1 ≤ p, q ≤ ∞, an
amalgam space (Lp, `q) (G) is a Banach space of measurable functions on G which belong locally
to Lp and globally to `q. Holland (1975) presented the first systematic paper for amalgam spaces.
Later, Stewart (1979) extended the Holland’s definition to locally compact abelian groups by the
Structure Theorem.

In this study, we consider Birkhoff’s Ergodic Theorem in the context of weighted variable exponent
Lebesgue and amalgam spaces. So, we have more general results in sense to Gorka (2016) in these
spaces.

2. Notation and Preliminaries
Definition 2.1.

For a measurable function p (.) : G −→ [1,∞) (called the variable exponent on G), we put

p− = essinf
x∈G

p(x), p+ = esssup
x∈G

p(x).

The variable exponent Lebesgue spaces Lp(.)(G) is the set of all measurable functions f on G such
that %p(.)(λf) <∞ for some λ > 0, equipped with the Luxemburg norm

‖f‖p(.) = inf

{
λ > 0 : %p(.)

(
f

λ

)
≤ 1

}
,

where the modular function %p(.) is defined by

%p(.)(f) =

∫
G

|f(x)|p(x) dµ(x).

If p+ < ∞, then f ∈ Lp(.)(G) if and only if %p(.)(f) < ∞. The set Lp(.)(G) is a Banach space with
the norm ‖.‖p(.). If p(x) = p is a constant function, then the Luxemburg norm ‖.‖p(.) coincides with
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the usual Lebesgue norm ‖.‖p. Note that, if p+ < ∞, then convergence in norm is equivalent to
convergence in modular, see Kováčik and Rákosník (1991).

Definition 2.2.

A measurable and locally integrable function w : G −→ (0,∞) is called a weight function. The
weighted modular is defined by

%p(.),w(f) =

∫
G

|f(x)|p(x)w(x)dµ(x).

The weighted variable exponent Lebesgue space Lp(.)w (G) consists of all measurable functions f on
G for which ‖f‖Lp(.)w (G) =

∥∥∥fw 1

p(.)

∥∥∥
p(.)

< ∞. Also, Lp(.)w (G) is a uniformly convex Banach space

and thus reflexive. Moreover, the dual space of Lp(.)w (G) is Lq(.)w∗ (G), where 1
p(.) + 1

q(.) = 1 and
w∗ = w1−q(.), see Lahmi et al. (2018). The relationship %p(.),w(.) and ‖.‖Lp(.)w (G) are as follows,

min
{
%p(.),w(f)

1

p− , %p(.),w(f)
1

p+

}
≤ ‖f‖Lp(.)w (G) ≤ max

{
%p(.),w(f)

1

p− , %p(.),w(f)
1

p+

}
,

min
{
‖f‖p

+

L
p(.)
w (G)

, ‖f‖p
−

L
p(.)
w (G)

}
≤ %p(.),w(f) ≤ max

{
‖f‖p

+

L
p(.)
w (G)

, ‖f‖p
−

L
p(.)
w (G)

}
.

Moreover, if 0 < C ≤ w, then we have Lp(.)w (G) ↪→ Lp(.)(Ω), since one easily sees that

C

∫
G

|f(x)|p(x) dx ≤
∫
G

|f(x)|p(x)w(x)dµ(x),

and C ‖f‖p(.) ≤ ‖f‖Lp(.)w (G) (see Aydın (2012b)). Instead of Haar measure µ, let us take the measure
ϑ such that dϑ(x) = w(x)dµ(x).

Definition 2.3.

Let (G,Σ, ϑ) be a measure space. A measurable function T : G −→ G is called a measure-
preserving transformation if

ϑ
(
T−1(A)

)
= ϑ (A) ,

for all A ∈ Σ.

Definition 2.4.

We denote by Lp(.)loc,w (G) the space of (equivalence classes of) functions on G such that f restricted
to any compact subset K of G belongs to Lp(.)w (G). Note that Lp(.)w (G) ↪→ L

p(.)
loc,w (G) ↪→ L1

loc (G) .

Definition 2.5.

Let G be a locally compact abelian group with Haar measure ϑ. By the Structure Theorem (Hewitt
and Ross (1979), Theorem 24.30), G = Ra × G1, where a is a nonnegative integer and G1 is a
locally compact abelian group which contains an open compact subgroup H. Let I = [0, 1)a × H
and J = Za×T, where T is a transversal of H in G1, i.e. G1 =

⋃
t∈T

(t+H) is a coset decomposition

of G1. For α ∈ J we define Iα = α + I, and therefore G is equal to the disjoint union of relatively
compact sets Iα.
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Let 1 ≤ p(.), q <∞. The weighted variable exponent amalgam spaces
(
L
p(.)
w , `q

)
are defined by(

Lp(.)w , `q
)

=
{
f ∈ Lp(.)loc,w (G) : ‖f‖(Lp(.)w ,`q) <∞

}
,

where

‖f‖(Lp(.)w ,`q) =

(∑
α∈J
‖fχIα‖

q

L
p(.)
w (G)

) 1

q

.

It is well known that
(
L
p(.)
w , `q

)
is a Banach space and does not depend on the particular choice

of Iα. Thus, we have the same spaces
(
L
p(.)
w , `q

)
. If w ≡ const., then

(
L
p(.)
w , `q

)
is denoted by(

Lp(.), `q
)
. Moreover, if p(.) and w ≡ const., then we have the usual amalgam space (Lp, `q), see

Aydın (2017), Holland (1975), Wiener (1926). The dual space of
(
L
p(.)
w , `q

)
is isometrically iso-

morphic to
(
L
r(.)
w∗ , `

t
)

where 1
p(.) + 1

r(.) = 1 and 1
q + 1

t = 1. Also, the space
(
L
p(.)
w , `q

)
is reflexive. In

addition,
(
L
p(.)
w , `q

)
is a solid Banach function space by Aydın and Gurkanli (2012) (Proposition

2.2), and
(
L
p(.)
w , `1

)
↪→
(
Lp(.), `1

)
↪→
(
L1, `1

)
= L1 by Aydın (2012a) (Proposition 3.5).

Definition 2.6 (Aydın (2017) and Squire (1984)).

L
p(.)
c,w (G) denotes the functions f in Lp(.)w (G) such that suppf ⊂ G is compact, that is,

Lp(.)c,w (G) =
{
f ∈ Lp(.)w (G) : suppf compact

}
.

Let K ⊂ G be given. The cardinality of the set

S(K) = {Iα : Iα ∩K 6= ∅} ,

is denoted by |S(K)|, where {Iα}α∈J is a collection of intervals.

Proposition 2.7 (Aydın (2017)).

If g belongs to Lp(.)c,w (G), then

(i) ‖g‖(Lp(.)w ,`q) ≤ |S(K)|
1

q ‖g‖Lp(.)w (G) for 1 ≤ q <∞,
(ii) ‖g‖(Lp(.)w ,`∞) ≤ |S(K)| ‖g‖Lp(.)w (G) for q =∞,

(iii) L
p(.)
c,w (G) ⊂

(
L
p(.)
w , `q

)
for 1 ≤ q ≤ ∞,

where K is the compact support of g.

Theorem 2.8.

L
p(.)
c,w (G) is dense subspace of

(
L
p(.)
w , `q

)
for 1 ≤ p(.), q <∞.

Proof:

If we use the similar techniques of Theorem 3.6 in Squire (1984) or Theorem 7 in Holland (1975),
then we can prove the theorem easily. �
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Proposition 2.9.

Cc (G), which consists of continuous functions on G whose support is compact, is dense in(
L
p(.)
w , `q

)
for 1 ≤ p(.), q <∞.

Proof:

It is clear that Cc (G) is included in
(
L
p(.)
w , `q

)
. Let f ∈

(
L
p(.)
w , `q

)
. By Theorem 2.8, given ε > 0

there exists g ∈ Lp(.)c,w (G) such that

‖f − g‖(Lp(.)w ,`q) <
ε

2
. (1)

If E is the compact support of g, then there exists h in Cc (E) such that

‖g − h‖Lp(.)w (E) <
ε

2 |S(E)|
1

q

,

since Cc (E) is dense in Lp(.)w (E), see Aydın (2012a). Hence, by Proposition 2.7, we have

‖g − h‖(Lp(.)w ,`q) ≤ |S(E)|
1

q ‖g − h‖Lp(.)w (E) <
ε

2
. (2)

Using (1) and (2), we obtain

‖f − h‖(Lp(.)w ,`q) ≤ ‖f − g‖(Lp(.)w ,`q) + ‖g − h‖(Lp(.)w ,`q)

<
ε

2
+
ε

2
= ε.

This completes the proof. �

3. Main Results

The following theorem was proved by Gorka (2016) in unweighted variable exponent Lebesgue
spaces.

Theorem 3.1.

Let (G,Σ, ϑ) be a probability space and T : G −→ G a measure preserving transformation with
respect to the measure ϑ. Moreover, if p(.) is T -invariant, i.e., p(T (.)) = p(.), then

(i) the limit

fav(x) = lim
n→∞

1

n

n−1∑
j=0

f
(
T j(x)

)
,

exists for all f ∈ Lp(.)w (G) and almost each point x ∈ G, and fav ∈ Lp(.)w (G).
(ii) for every f ∈ Lp(.)w (G), we have

fav(x) = fav (T (x)) , (3)∫
G

favdϑ =

∫
G

fdϑ, (4)
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lim
n→∞

∥∥∥∥∥∥fav − 1

n

n−1∑
j=0

f ◦ T j
∥∥∥∥∥∥
L
p(.)
w (G)

= 0. (5)

Proof:

Since |G| <∞ and Lp(.)w (G) ↪→ Lp(.)(G) ↪→ L1(G), the existence of the limit fav(x) for almost every
point of G follows from the standard Birkhoof’s Theorem. By Fatou Lemma, we have

∫
G

|fav(x)|p(x) dϑ =

∫
G

∣∣∣∣∣∣ lim
n→∞

1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)

dϑ

≤
∫
G

lim
n→∞

 1

n

n−1∑
j=0

∣∣f (T j(x)
)∣∣p(x)

dϑ

≤ lim inf
n→∞

∫
G

 1

n

n−1∑
j=0

∣∣f (T j(x)
)∣∣p(x)

dϑ

≤ lim inf
n→∞

1

n

n−1∑
j=0

∫
G

∣∣f (T j(x)
)∣∣p(x) dϑ.

Here we used convexity and Jensen inequality in the last step. Moreover, since T is a measure
preserving map and p(.) is T -invariant, we get∫

G

|f(T (x))|p(x) dϑ =

∫
G

|f(T (x))|p(T (x)) dϑ =

∫
G

|f(x)|p(x) dϑ.

This follows that ∫
G

|fav(x)|p(x) dϑ ≤
∫
G

|f(x)|p(x) dϑ <∞. (6)

Thus we get fav ∈ Lp(.)w (G). This completes (i).

By the Ergodic Theorem in classical Lebesgue spaces, we have (3) and (4) immediately. In order
to prove (5) we assume that f ∈ Cc(G). Thus, f ∈ L∞(G) and

lim
n→∞

∣∣∣∣∣∣fav(x)− 1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)

= 0, a.e.

‖fav‖L∞(G) ≤ ‖f‖L∞(G) .

Therefore, we have∣∣∣∣∣∣fav(x)− 1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)

w(x) ≤

∣∣∣∣∣∣‖f‖L∞(G) +
1

n

n−1∑
j=0

∥∥f (T j)∥∥
L∞(G)

∣∣∣∣∣∣
p(x)

w(x)

≤ 2p
+

max
{
‖f‖p

+

L∞(G) , ‖f‖
p−

L∞(G)

}
w(x) ∈ L1(G).
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Hence, by Lebesgue dominated convergence theorem we have (5), provided f ∈ Cc(G). Since
Cc(G) is dense in L

p(.)
w (G) with respect to the norm ‖.‖Lp(.)w (G) (see Aydın (2012a)), then for any

f ∈ Lp(.)w (G) and ε > 0 there is a g ∈ Cc(G) such that

%p(.),w(f − g) < ε. (7)

By the previous step, there is an n0 such that the inequality

%p(.),w

gav − 1

n

n−1∑
j=0

g ◦ T j
 < ε (8)

holds for n ≥ n0. Let q ≥ 1. Then by convexity of the function y 7→ yq, the inequality (a+ b+ c)q ≤
3q−1 (aq + bq + cq) holds for any nonnegative a, b, c. Hence, we get

%p(.),w

fav − 1

n

n−1∑
j=0

f ◦ T j
 =

∫
G

∣∣∣∣∣∣fav(x)− 1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)

dϑ

≤ 3q
+−1

%p(.),w (fav − gav) + %p(.),w

gav − 1

n

n−1∑
j=0

g ◦ T j


+%p(.),w

 1

n

n−1∑
j=0

(f − g) ◦ T j
 .

Thus, using (6), (7), (8) and convexity of %p(.),w, we have

%p(.),w

fav − 1

n

n−1∑
j=0

f ◦ T j
 < ε.

That is the desired result. �

Now we give the Ergodic Theorem for the spaces
(
L
p(.)
w , `1

)
.

Theorem 3.2.

Let (G,Σ, ϑ) be a probability space and T : G −→ G a measure preserving transformation with
respect to the measure ϑ. Moreover, if p(.) is T -invariant, i.e., p(T (.)) = p(.), then

(i) the limit

fav(x) = lim
n→∞

1

n

n−1∑
j=0

f
(
T j(x)

)
,

exists for all f ∈
(
L
p(.)
w , `1

)
and almost each point x ∈ G, and fav ∈

(
L
p(.)
w , `1

)
.

(ii) for every f ∈
(
L
p(.)
w , `1

)
, we have

fav(x) = fav (T (x)) , (9)
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∫
G

favdϑ =

∫
G

fdϑ, (10)

lim
n→∞

∥∥∥∥∥∥fav − 1

n

n−1∑
j=0

f ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

= 0. (11)

Proof:

Since
(
L
p(.)
w , `1

)
↪→
(
Lp(.), `1

)
↪→
(
L1, `1

)
= L1, then the existence of the limit fav(x) for almost

every point of G follows from the standard Birkhoof’s Theorem. Thus, by Fatou Lemma we have

‖fav‖(Lp(.)w ,`1) =
∑
α∈J
‖fav‖Lp(.)w (Iα)

≤
∑
α∈J
‖f‖Lp(.)w (Iα)

= ‖f‖(Lp(.)w ,`1) ,

and then fav ∈
(
L
p(.)
w , `1

)
. This completes (i). By the Ergodic Theorem in classical Lebesgue

spaces, we have (9) and (10), immediately. By Proposition 2.9, given ε > 0 there exists g ∈ Cc such
that

‖f − g‖(Lp(.)w ,`1) <
ε

2
. (12)

If E is the compact support of g, then we have∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
L
p(.)
w (E)

<
ε

2 |S(E)|
,

by Theorem 3.1. If we consider the Proposition 2.7, we get∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

≤ |S(E)|

∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
L
p(.)
w (E)

<
ε

2
. (13)

Hence, by Lebesgue dominated convergence theorem we have (11), provided g ∈ Cc. Finally, using
(12) and (13), we have∥∥∥∥∥∥fav − 1

n

n−1∑
j=0

f ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

≤ ‖fav − gav‖(Lp(.)w ,`1) +

∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

+

∥∥∥∥∥∥ 1

n

n−1∑
j=0

(f − g) ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

≤ 2 ‖f − g‖(Lp(.)w ,`1) +

∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥

(Lp(.)w ,`1)

<
ε

2
+
ε

2
= ε.

This completes the proof. �
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4. Conclusion

In this study, we give some historical informations and importance of weighted variable exponent
Lebesgue and amalgam spaces. Moreover, in Gorka (2016), the author studied Birkhoof’s Ergodic
theorem for unweighted variable exponent Lebesgue spaces. Finally, we have considered this work
and have generalized Birkhoof’s Ergodic theorem to weighted variable exponent Lebesgue and
amalgam spaces.
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