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Abstract

In this paper, we study warped product pseudo-slant submanifolds of nearly cosymplectic man-
ifolds. First, we derive the integrability conditions of the distributions and then, we investigate
the geometry of the leaves of both distributions. Also, we prove a characterization theorem for a
pseudo-slant submanifold to be locally a warped product manifold.
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1. Introduction

The geometry of submanifolds of almost Hermitian and almost contact manifolds is one of the
most important topic in differential geometry. The submanifolds of an almost Hermitian manifold
present an interesting geometry, as the action of complex structure J which transforms a vector
to a vector perpendicular to it. The typical classes of submanifolds are holomorphic and totally
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real submanifolds which are defined in the series of articles Blair (1976); Blair (2010); Blair et
al. (1974); Chen (1990). A submanifold M of an almost Hermitian manifold (M̃, J, g̃) is a
holomorphic (invariant) if J(TpM) ⊂ TpM and M is totally real (anti-invariant) if J(TpM) ⊂ T⊥M

for every p ∈ M , where TpM and T⊥M denote the tangent and normal spaces of M at the point p,
respectively. Besides holomorphic (invariant) and totally real (anti-invariant) submanifolds, there
are four other most fascinating classes of submanifolds of almost Hermitian and almost contact
manifolds which are determined by the behavior of tangent bundle of the submanifold under the
action of the complex structure and almost contact structure, respectively.

It is known that the odd dimensional counter parts of nearly Kaehler manifolds are nearly
cosymplectic manifolds. Let us recall that an almost contact metric structure (ϕ, ξ, η, g) on
manifold M̃ is nearly cosymplectic if it is satisfying (∇̃Xϕ)X = 0 where X is tangent to M̃ . The
canonical example of nearly cosymplectic structure is S5 as a totally geodesic hypersurface of S6.
It is known that S5 has a non-cosymplectic nearly cosymplectic structure. On the other hand, the
notion of warped product submanifolds in a Kaehler manifold was introduced by Chen (2011). He
has established a sharp relationship between the squared norm of the second fundamental form and
warping function. Later on, many geometers studied such type of warped product submanifolds in
almost Hermitian as well as almost contact manifolds.

Recently, Sahin (2009) studied warped product pseudo-slant (as the name of hemi-slant) sub
manifolds in a Kaehler manifold. He proved the non-existence of such warped products. In case of
existence, he has obtained many fundamentals results including a characterization and an optimal
inequality. Mustafa et al. (2013); Uddin et al. (2012); Uddin et al. (2016) also studied the warped
product pseudo-slant submanifolds of nearly cosymplectic manifolds and they have obtained some
existence result in terms of endomorphisms T and F . Also, the characterization of warped
product pseudo-slant submanifolds of nearly cosymplectic manifolds was proved in Al-Ghefari et
al. (2017). The warped products for different structures on manifolds have been studied tremen-
dously, see for instance, Ali et al. (2018); Ali et al. (2017); Chen et al. (2018); Hui et al. (2012);
Hui et al. (2017); Hui et al. (2017); Ali et al (2017); Hui et al. (2017), Mustafa et al. (2013), Uddin
et al. (2012); Uddin et al. (2016); Uddin et al. (2017); Uddin et al. (2017); Uddin (2017); Uddin et
al. (2018). For up-to-date survey on warped product submanifolds and warped product manifolds,
we refers to Chen’s book (2017) and his survey articles Chen (2013); Chen (2018).

The purpose of this paper is to study pseudo-slant submanifolds in brief not in detail as our aim is to
discuss the warped products. We prove the existence of warped product pseudo-slant submanifolds
of the form M = Mθ ×f M⊥ by giving a characterization result.

2. Preliminaries

A (2n+1)−dimensional manifold (M̃, g) is said to be an almost contact metric manifold if it admits
an endomorphism ϕ of its tangent bundle TM̃ , a vector field ξ, called structure vector field and η,
the dual 1−form of ξ satisfying the following:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (1)



1250 Ali H. Alkhaldi and Abid Kamal

and

g(ϕU,ϕV ) = g(U, V )− η(U)η(V ), η(U) = g(U, ξ), (2)

for any U, V tangent to M̃ . An almost contact metric structure (ϕ, ξ, η, g) is said to be a normal if
almost complex structure J on a product manifold M̃ ×R given by

J(U, f
d

dt
) = (ϕU − fξ, η(U)

d

dt
),

where f is a smooth function on M̃ × R, has no torsion, i.e., J is integrable, the condition for
normality in term of ϕ, η and ξ is [ϕ,ϕ] + 2dη⊗ ξ = 0 on M̃ , where [ϕ,ϕ] is the Nijenhuis tensor of
ϕ. Finally, the second fundamental 2-form Φ is defined by Φ(U, V ) = g(U,ϕV ). An almost contact
metric structure (ϕ, η, ξ) is said to be cosymplectic if it is normal and both Φ and η are closed. They
characterized by (∇̃Uϕ)V = 0 and ∇̃Uξ = 0. An almost contact metric structure (ϕ, η, ξ) is said
to be nearly cosymplectic if ϕ is Killing, i.e., if

(∇̃Uϕ)U = 0 or equivalently (∇̃Uϕ)V + (∇̃V ϕ)U = 0, (3)

for any U, V tangent to M̃ , where ∇̃ is the Riemannian connection on M̃ . If we replace U = ξ, V =

ξ in (3), we find that (∇̃ξϕ)ξ = 0 which implies that ϕ∇̃ξξ = 0. Now applying ϕ and using (1), we
get, ∇̃ξξ = 0. Since from Gauss formula finally, we get ∇ξξ = 0 and h(ξ, ξ) = 0. The structure is
said to be a closely cosymplectic, if ϕ is Killing and η is closed.

Now, let M be a submanifold of M̃ , we denote by ∇ is induced Riemannian connection on M

and g is the Riemannian metric on M̃ as well as the metric induced on M . Let TM and T⊥M be
the Lie algebra of vector fields tangent to M and normal to M , respectively and ∇⊥ the induced
connection on T⊥M . Denote by F(M) the algebra of smooth functions on M and by Γ(TM) the
F(M)-module of smooth sections of TM over M . Then, the Gauss and Weingarten formulas are
given by

∇̃UV = ∇UV + h(U, V ), (4)

∇̃UN = −ANU +∇⊥
UN, (5)

for each U, V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and
the shape operator (corresponding to the normal vector field N) respectively for the immersion of
M into M̃ . They are related as

g(h(U, V ), N) = g(ANU, V ). (6)

Now, for any U ∈ Γ(TM), we write

ϕU = TU + FU, (7)

where TU and FU are the tangential and normal components of ϕU , respectively. Similarly for any
N ∈ Γ(T⊥M), we have

ϕN = tN + fN, (8)

where tN (resp. fN) is the tangential (resp. normal) components of ϕN . The covariant derivative
of the endomorphism ϕ as

(∇̃Uϕ)V = ∇̃UϕV − ϕ∇̃UV, ∀U, V ∈ Γ(TM̃). (9)
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Proposition 2.1. (Endo (2005))

On a nearly cosymplectic manifold ξ is Killing.

From the above proposition one has g(∇̃Uξ, U) = 0, for any vector field U tangent to M̃ , where M̃
is a nearly cosymplectic manifold.

We denote the tangential and normal parts of (∇̃Uϕ)V by PUV and QUV such that

(∇̃Uϕ)V = PUV +QUV, (10)

for any U, V ∈ Γ(TM̃). Now, in a nearly cosymplectic manifold we can expressed as

(i) PUV + PV U = 0, (ii) QUV +QV U = 0. (11)

Let M be a submanifold tangent to the structure vector field ξ isometrically immersed into an
almost contact metric manifold M̃ . Then, M is said to be contact CR-submanifold if there exists a
pair of orthogonal distribution D : p→ Dp and D⊥ : p→ D⊥, for all p ∈M such that

(i) TM = D⊕D⊥⊕ < ξ >, where< ξ > is the 1-dimensional distribution spanned by the structure
vector field ξ,

(ii) D is invariant, i.e., ϕD = D,
(iii) D⊥ is anti-invariant, i.e., ϕD⊥ ⊂ T⊥M .

Invariant and anti-invariant submanifolds are special classes of contact CR-submanifold. If we
denote the dimensions of the distributionsD andD⊥ by d1 and d2, respectively. Then,M is invariant
(resp. anti-invariant) if d2 = 0(resp.d1 = 0).

There is another class of submanifolds that is called the slant submanifold. For each non zero
vector U tangent to M at p, such that U is not proportional to ξp, we denote by 0 ≤ θ(U) ≤ π/2,
the angle between ϕU and TpM is called the Wirtinger angle. If the angle θ(U) is constant for all
U ∈ TPM− < ξ > and p ∈ M , then, M is said to be a slant submanifold Cabrerizo et al.(200) and
the angle θ is called slant angle of M . Obviously if θ = 0, M is invariant and if θ = π/2, M is
anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant
nor anti-invariant. Also we recall the following:

Theorem 2.2. (Cabrerizo et al. (2002))

Let M be a submanifold of an almost contact metric manifold M̃ such that ξ ∈ TM . Then, M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

T 2 = λ(−I + η ⊗ ξ). (12)

Furthermore, in such a case, if θ is slant angle, then, it satisfies that λ = cos2 θ.

Hence, for a slant submanifold M of an almost contact metric manifold M̃ , the following relations
are consequences of the above theorem:

g(TX, TY ) = cos2 θ{g(X,Y )− η(X)η(Y )}, (13)
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and

g(FX,FY ) = sin2 θ{g(X,Y )− η(X)η(Y )}, (14)

for any X,Y ∈ Γ(TM). We have another useful result as follows:

Theorem 2.3.(Uddin et al. (2017))

Let M be a slant submanifold of an almost contact metric manifold M̃ such that ξ ∈ TM . Then,
we have

(a) tFX = − sin2 θ(X − η(X)ξ), (b) fFX = −FTX, (15)

for any X ∈ Γ(TM).

3. Pseudo-slant submanifolds of nearly cosymplectic manifolds

Pseudo-slant submanifold were defined by Carriazo (2002) under name of anti-slant submanifolds
as a particular class of bi-slant submanifolds. However, the term "anti-slant" seems that there is no
slant part, which is not a case, as one can see the following definition.

Definition 3.1.

A submanifold M of an almost contact metric manifold M̃ is said to be a pseudo-slant submanifold
of M̃ , if there exist two orthogonal distributions D⊥ and Dθ such that:

(i) TM = Dθ ⊕D⊥ ⊕ 〈ξ〉, where < ξ > is 1-dimensional distribution spanned by ξ,
(ii) D⊥ is an anti invariant distribution under ϕ, i.e., ϕD⊥ ⊆ T⊥M ,

(iii) Dθ is slant distribution with slant angle θ 6= 0, π2 .

Let m1 and m2 be dimensions of the distributions D⊥ and Dθ respectively. Then, we have

(i) m2=0, then M is an anti invariant submanifold,
(ii) m1=0 and θ = 0, then M is an invariant submanifold,

(iii) if m1=0 and θ 6= 0, π2 , then, M is proper-slant submanifold,
(iv) if θ = π

2 , then, M is an anti invariant submanifold,
(v) θ = 0, then, M is semi-invariant submanifold.

If µ is an invariant subspace of normal bundle T⊥M , then in the case of pseudo-slant submanifold,
the normal bundle T⊥M can be decomposed as follows:

T⊥M = FD⊥ ⊕ FDθ ⊕ µ, (16)

where the bundle µ is an even dimensional invariant sub bundle of T⊥M . A pseudo-slant sub-
manifold is said to be a mixed geodesic if h(X,Z) = 0 for all X ∈ Γ(Dθ) and Z ∈ Γ(D⊥). For
the integrability and totally geodesic foliations of the involved distributions in the definition of
pseudo-slant submanifold, we obtain following results.
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Theorem 3.2.

Let M be a pseudo-slant submanifold of a nearly cosymplectic manifold M̃ . The distribution D⊥

is integrable if and only if

g(∇ZW,X) = sec2 θ

{
g(h(Z,W ), FTX)− 1

2

(
g(h(Z, TX), ϕW ) + g(h(W,TX), ϕZ)

)}
,

for all Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ ⊕ ξ).

Proof:

From the definition of the Lie bracket, we have

g([Z,W ], X) = g(∇̃ZW,X)− g(∇̃WZ,X).

From (2), we get

g([Z,W ], X) = g(ϕ∇̃ZW,ϕX) + η(X)η(∇̃ZW )− g(∇̃WZ,X).

Using (7) and (5) in Uddin et al. (2012), we obtain

g([Z,W ], X) = g(ϕ∇̃ZW,TX) + g(ϕ∇̃ZW,FX)− g(∇̃WZ,X).

From (9) and using the property Riemannian metric g, we derive

g([Z,W ], X) = g(∇̃ZϕW,TX)− g((∇̃Zϕ)W,TX)− g(∇̃ZW,ϕFX)− g(∇̃WZ,X).

Then, by (3), (5) and (8), we arrive at

g([Z,W ], X) = g((∇̃Wϕ)Z, TX)− g(∇̃ZW, tFX)− g(∇̃ZW, fFX)

− g(AϕWZ, TX)− g(∇̃WZ,X).

Then, by (9), (5) and Theorem 2.3, we obtain

g([Z,W ], X) = g(∇̃WϕZ, TX)− g(∇̃WZ,ϕTX) + sin2 θg(∇̃ZW,X)

− sin2 θη(X)g(ξ, ∇̃ZW )− g(h(Z,W ), FTX)− g(AϕWZ, TX)

− g(∇̃WZ,X).

Using (7), (5) and property 2.5 in Uddin et al.(2012), thus, the above equation can be written as

g([Z,W ], X) = sin2 θg(∇̃ZW,X)− g(AϕZW,TX) + g(∇̃WZ, T 2X)

+ 2g(h(Z,W ), FTX)− g(AϕWZ, TX)− g(∇̃WZ,X).

Thus, by (12) and D⊥ is integrable, then the above equation take the form

2 cos2 θg(∇ZW,X) = 2g(h(Z,W ), FTZ)− g(AϕZW,TX)− g(AϕWZ, TX),

which is our assertion. �
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Theorem 3.3.

Let M be a pseudo-slant submanifold of a nearly cosymplectic manifold M̃ . Then the distribution
Dθ ⊕ ξ defines as totally geodesic foliation in M if and only if

g(h(X,TY ) + h(TX, Y ), ϕZ) = g(h(X,Z), FTY ) + g(h(Y, Z), FTX),

for all Z ∈ Γ(D⊥) and X,Y ∈ Γ(Dθ ⊕ ξ).

Proof:

By using the property of a Riemannian metric g, we have

g(∇XY,Z). = g(ϕ∇̃XY, ϕZ).

From the covariant property (9), we obtain

g(∇XY,Z) = g(∇̃XϕY, ϕZ)− g((∇̃Xϕ)Y, ϕZ).

Thus, by (3) and (9), we get

g(∇XY,Z) = g(∇̃XTY, ϕZ) + g(∇̃XFY, ϕZ) + g((∇̃Y ϕ)X,ϕZ).

Since, FY and ϕZ are perpendicular, then, using the property of a Riemannian connection and (9),
(4), we arrive at

g(∇XY,Z) = g(h(X,TY ), ϕZ)− g(FY, ∇̃XϕZ) + g(∇̃Y ϕX,ϕZ)− g(∇̃YX,Z).

Again by (9) and (7), we obtain

g(∇XY,Z) = g(h(X,TY ), ϕZ)− g(FY, (∇̃Xϕ)Z) + g(ϕFY, ∇̃XZ)

+ g(∇̃Y TX,ϕZ) + g(∇̃Y FX,ϕZ)− g(∇̃YX,Z).

Thus, by (8), (4) and the property of Riemannian connection, we derive

g(∇XY,Z) = g(h(X,TY ), ϕZ) + g(h(TX, Y ), ϕZ) + g(FY,QXZ) + g(tFY, ∇̃XZ)

+ g(fFY, ∇̃XZ)− g(FX,ϕ∇̃Y Z)− g(FX, (∇̃Xϕ)Z)− g(∇̃YX,Z).

From the relations (5), (10) and Theorem 2.3, we obtain

g(∇XY, Z) = g(h(X,TY ), ϕZ) + g(h(TX, Y ), ϕZ) + g(ϕY,QXZ)

− sin2 θg(Y, ∇̃XZ) + sin2 θη(Y )g(ξ, ∇̃XZ)− g(h(X,Z), FTY )

− g(FX,QY Z) + g(ϕFX, ∇̃Y Z)− g(∇̃YX,Z).

Furthermore, since g(ϕY,QXZ) = g(Y, ϕQXZ) = 0 and by using (8), we derive

cos2 θg(∇XY,Z) = g(h(X,TY ), ϕZ) + g(h(TX, Y ), ϕZ)− g(h(X,Z), FTY )

+ g(tFX, ∇̃Y Z) + g(fFX, ∇̃Y Z)− g(∇̃YX,Z).

Then, from Theorem 2.3 and the fact that X,Y and Z are orthogonal, we get

cos2 θg(∇XY,Z) = g(h(X,TY ) + h(TX, Y ), ϕZ)− g(h(X,Z), FTY )− g(∇̃YX,Z)

− g(FTX, h(Y,Z) + sin2 θg(∇̃YX,Z) + sin2 θη(X)g(ξ, ∇̃Y Z).
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Finally, the above equation can be written as

cos2 θg(∇XY +∇YX,Z) = g(h(X,TY ) + h(TX, Y ), ϕZ)− g(h(X,Z), FTY )

− g(h(Y,Z), FTX).

Hence, the result follows from the last result. �

4. Warped product submanifoldsMθ ×f M⊥

A warped product manifolds are generalized version of product manifolds.The notion of warped
product manifolds initiated by Bishop et al. (1969). They defined these manifolds as: Let (B, g1)

and (F, g2) be two Riemannian manifolds and f , a positive differentiable function onB. The warped
product of B and F is the Riemannian manifold B×F = (B×F, g), where g = g1+f2g2. A warped
product manifold M is said to be a trivial warped product if it’s warping function f is constant. A
trivial warped productB×F is nothing but Riemannian productB×fF where fF is the Riemannian
manifold with Riemannian metric f2gF which is homothetic to the original metric gF of F . Bishop
et al. (1969) also obtained the following lemma which provides some basic formulas on warped
product manifolds.

Lemma 4.1.(Bishop et al. (1969))

Let M = B ×f F be a warped product manifold. If X,Y ∈ Γ(TB) and Z,W ∈ Γ(TF ). Then, we
have

(i) ∇XY ∈ (TB),
(ii) ∇XZ = ∇ZX = (X ln f)Z,

(iii) ∇ZW = ∇′
ZW − g(Z,W )∇ln f ,

where ∇ ln f is gradient of the function ln f which is defined as g(∇ ln f, U) = U ln f , for any
U ∈ Γ(TM).

From the above result it is clear that B is totally geodesic in M and F is totally umbilical in M . If
we take ξ tangent to Mθ, then, for any X ∈ Γ(TM⊥), we have

∇̃Xξ = ∇Xξ + h(X, ξ).

Taking the inner product withX ∈ Γ(TM⊥), thus, by Proposition 2.1 and Lemma 4.1 (ii), we obtain
(ξ ln f)‖X‖2 = 0 . Which implies that either dim(M⊥) = 0, which is not possible for a nontrivial
warped product or ξ ln f = 0.

In this section, we study characterization of non trivial warped product pseudo-slant submanifolds
of the forms Mθ ×f M⊥ which is the natural extension of warped product CR-submanifolds. Every
CR-warped product submanifold is a non trivial warped product pseudo-slant submanifolds of
forms Mθ ×f M⊥ and M⊥ ×f Mθ with slant angle θ = 0. First we consider the warped product
M = Mθ ×f M⊥ where Mθ and M⊥ are slant and anti-invariant submanifolds. We give some
preparatory lemma.
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Lemma 4.2.

Let M = Mθ ×f M⊥ be a non-trivial warped product pseudo-slant submanifold of nearly cosym-
plectic manifold M̃ . Then, we have

(i) g(h(Z,Z), FTX)− g(h(Z, TX), ϕZ) = −(X ln f) cos2 θ||Z||2,
(ii) g(h(Z,Z), FX)− g(h(Z,X), ϕZ) = (TX ln f)||Z||2,

for any X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), where structure vector field ξ is tangent to Mθ.

Proof:

The first part of lemma follows from Lemma 3.2 in Al-Solamy (2015). Second part follows from
(i) by interchanging X by TX. �

Theorem 4.3.

Let M be a proper pseudo-slant submanifold of a nearly cosymplectic manifold M̃ such that the
anti-invariant distribution is integrable. Then, M is locally a warped product of proper slant and
anti-invariant submanifolds if and only if

AϕZTX −AFTXZ = cos2 θ(Xλ)Z, (17)

for any Z ∈ Γ(D⊥) and any X ∈ Γ(Dθ ⊕ ξ) and for a differentiable function λ on M such that
Wλ = 0, for any W ∈ Γ(D⊥).

Proof:

If ξ is tangent to Mθ and any X ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), then, direct part follows from the
Lemma 4.2. Conversely suppose that M be a pseudo-slant submanifold such that anti-invariant
distribution is integrable, then, by hypothesis for any X ∈ Γ(Dθ ⊕ ξ), we have

AFTXZ −AϕZTX = − cos2 θ(Xλ)Z,

for all Z ∈ Γ(D⊥). Let us take the inner product in above equation with Y ∈ Γ(Dθ ⊕ ξ) and using
the property that Y and Z are orthogonal to each other, then, above equation take the form

g(h(Y,Z), FTX) = g(h(Y, TX), ϕZ). (18)

By using the polarization identity, we derive

g(h(X,Z), FTY ) = g(h(X,TY ), ϕZ). (19)

From (18) and (19), we get

g(h(Y, Z), FTX) + g(h(X,Z), FTY ) = g(h(X,TY ) + h(Y, TX), ϕZ). (20)

Thus, by (20) and Theorem 3.3, we conclude that the distribution Dθ ⊕ ξ defines a totally geodesic
foliation which means that it’s leaves are totally geodesic inM . So far the anti-invariant distribution
D⊥ is concerned that it is integrable if and only if

2 cos2 θg(∇ZW,X) = 2g(h(Z,W ), FTX)− g(h(Z, TX), ϕW ) + g(h(W,TX), ϕZ),
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for all Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ ⊕ ξ). By using (6), the above expression takes

2 cos2 θg(∇ZW,X) = g(AFTXW −AϕWTX,Z) + g(AFTXZ −AϕZTX,W ).

Then, by using (17), we obtain

2 cos2 θg(∇ZW,X) = − cos2 θ(Xλ)g(W,Z)− cos2 θ(Xλ)g(Z,W ),

which implies that

g(∇ZW,X) = −(Xλ)g(Z,W ).

Moreover, D⊥ is integrable, then, we consider M⊥ leaf of D⊥ and h⊥ be a second fundamental
form of M⊥ into M . Then, from (4), we get

g(h⊥(Z,W ), X) = −(Xλ)g(Z,W ).

Thus, by the hypothesis, we derive

h⊥(Z,W ) = −g(Z,W )∇λ, (21)

where ∇λ is the gradient of the function λ. Then, it follows from (21) that is the leaves of D⊥

are totally umbilical in M with mean curvature vector H⊥ = −∇λ. Moreover, Wλ = 0, for all
W ∈ Γ(D⊥) which means that M⊥ has parallel mean curvature vector corresponding to normal
connection ∇θ of Mθ into M , i.e., the leaves are an extrinsic spheres in M . Then, apply the result
of Hiepko (1979), we obtain that M is a locally warped product submanifold in the form M =

Mθ ×f M⊥ such that Mθ and M⊥ are proper slant and anti-invariant integrals submanifolds of Dθ

and D⊥. This completes the proof. �

5. Conclusion

As a conclusion we summarise the manuscript as follows: In Section 3, we have obtained the
integrability conditions which we have used in the next section. We also find conditions for the
totally geodesicness of the involved anti-invariant distribution D⊥ and slant distribution Dθ. In
section 4, we have given the necessary and sufficient conditions that a pseudo-slant submanifold
satisfying (17) is a warped product and conversely the warped products of anti-invariant and proper
slant submanifolds provide (17) in a nearly cosymplectic manifold.
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