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Abstract

In this paper, we first introduce the notion of recurrent Ricci tensor which is the generalization of
parallel Ricci tensor in the complex quadric Qm = SOm+2/SOmSO2. After then, we investigate
real hypersurfaces of the complex quadricQm with the condition of recurrent Ricci tensor and give
the glimpse of full classification with this condition.
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1. Introduction

The theory of complex hypersurface is an active area of research in the field of differential ge-
ometry and was initiated in Smith (1967). After then, Reckziegel gave the concept of complex
hypersurface in CPm+1 known as complex quadric Qm (see Reckziegel (1995)).

We say that the Ricci tensor Ric is parallel if it satisfies ∇XRic = 0 for X ∈ Γ(TM), (see Suh
(2015) and Suh et al. (2014)). The geometrical meaning of this notion is that the eigenspaces of
the Ricci tensor Ric are parallel along any curve in M . Here, the eigenspaces of the Ricci tensor
are said to be parallel if they are invariant under any parallel displacement along any curves on
M in Qm. On the other hand, it gives that if E is the eigenspace of Ricci tensor Ric then, for any
Y ∈ E,∇XY ∈ E along any direction X on M in Qm.

Many papers have been appeared by considering the real hypersurface of complex quadricQm (see
Bansal et al. (2017, 2018), Berndt et al. (2013), Klein (2008), Suh (2014, 2015), Suh et al. (2016)).
Moreover, Y. J. Suh proved a theorem of non-existence for real hypersurfaces in complex quadric
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Qm with parallel Ricci tensor (see Suh (2015)).

In our paper, in order to make a generalisation of parallel Ricci tensor, we introduce a notion of
recurrent Ricci tensor for a real hypersurface M in Qm stated by

(∇XRic)Y = ω(X)Ric(Y ),

where, ω is 1-form on M and X,Y ∈ Γ(TM).

Consequently, we have the results.

Theorem 1.

There do not exist any Hopf real hypersurfaces M in complex quadric Qm with recurrent Ricci
tensor and U-principal normal vector field.

Also, motivated by the above given result, we give here one more proposition and theorem as
follows:

Proposition 1.

Let M be a Hopf real hypersurfaces in the complex quadric Qm with recurrent Ricci tensor and
U-isotropic unit normal vector field. Then, M can never be a tube over a totally geodesic CP k in
Qm(m = 2k).

Theorem 2.

LetM be a Hopf real hypersurfaces in the complex quadricQm(m ≥ 4), with recurrent Ricci tensor
and U-isotropic unit normal vector field. If the shape operator commutes with the structure tensor
on the distribution Q⊥ then, M has 3 distinct constant principal curvatures given by

α = 0, γ = 0, λ = −
√

3, and µ =
√

3,

or

α =
√

2(m− 3), γ = 0, λ = 0, and µ = − 2√
2(m− 3)

, (1.1)

with corresponding principal curvature spaces

Tα = [ξ], Tγ = [Aξ,AN ], φ(Tλ) = Tµ, with dim Tλ = dim Tµ = m− 2.

As long as, by virtue of simpleness, all over the paper we denote real hypersurface and vector field
by r.h. and v.f. respectively, unless otherwise stated.

2. Preliminaries

For more details of the geometry of the complex quadric we refer to (Berndt et al. (2013),
Reckziegel (1995), Suh (2015)). The complex quadric Qm is the complex hypersurface in CPm+1

defined by the equation z21 + · · · + z2m+1 = 0, where z1, · · · , zm+1 are homogeneous coordinates
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on CPm+1 equipped with the induced Riemannian metric g. Then, naturally the canonical Käh-
ler structure (J, g) on Qm is induced by Kähler structure on CPm+1 (see Suh (2014)). The 1-
dimensional quadric Q1 is congruent to the round 2-sphere S2. The 2-dimensional quadric Q2 is
congruent to the Riemannian product S2×S2. For this, we will assumem ≥ 3 throughout the paper.

Apart from the complex structure J there is one more geometric structure on Qm, known as com-
plex conjugation A on the tangent spaces of Qm which is a parallel rank-two vector bundle U
containing S1-bundle of real structures. For a point x in Qm, take a conjugate of x as x and let Ax
be the shape operator at x of Qm in CPm+1. Then, we have AxW = W, W ∈ TxQm, that is, A is
an involution or Ax is complex conjugation restricted to TxQm. Now, TxQm is decomposed as (see
Suh (2014)):

TxQm = V(Ax)⊕ JV(Ax),

whereas V(A) = {X ∈ T[x]Q
m∗|AX = X} and JV(A) = {X ∈ T[x]Q

m∗|AX = −X}, [x] ∈ Qm∗

denote the (+1)-eigenspace and (-1)-eigenspace of the involution A2 = I on T[x]Q
m∗, [x] ∈ Qm∗,

respectively.

Now, W 6= 0 ∈ TxQm is known as singular tangent vector if it is tangent to more than one maximal
flat in Qm. There are two types of singular tangent vectors for the complex quadric Qm (see Suh
(2014)):

(1) If there exists a complex conjugation A ∈ U such that W ∈ V(A) then, W is singular. Such a
singular tangent vector is called U-principal.

(2) If there exists a conjugation A ∈ U and orthonormal vectors X,Y ∈ V(A) such that W/||W || =
(X+JY )/

√
2 then, W is singular. Such a singular tangent vector is called U-isotropic. Further,

there exists A ∈ U for W ∈ TxQm and orthonormal vectors X,Y ∈ V(A) satisfying

W = cos(t)X + sin(t)JY, for t ∈ [0, π/4].

Next, we recall some notions for r.h. M of complex quadric Qm. Let Mn be a r.h. of Qm with a
connection ∇ induced from the LC connection ∇ in Qm. Then, for a unit normal v.f. N of a r.h. of
complex quadric Qm, a unit v.f. ξ ∈ Γ(TM), known as Hopf v.f., is define by ξ = −JN with dual
1-form ζ(X) = g(X, ξ). Then, any vector X ∈ Γ(TM) can be written as JX = φX+ ζ(X)N , where
φX stands for the tangential element of JX. Here, M associates an induced almost contact metric
structure (φ, ξ, ζ, g) satisfying the following relations (see Blair (1976))

ζ(ξ) = 1, ζ(X) = g(ξ,X),
φ2X +X = ζ(X)ξ,

g(φX, φY ) + ζ(X)ζ(Y ) = g(X,Y ), g(φX, Y ) = −g(X,φY ).

 (2.1)

Moreover, r.h. M of Qm satisfy

∇Xξ = φΛX,
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where Λ is the shaper operator of M .

Next, the fundamental Gauss and the Weingarten formulae are

∇XY = ∇XY + Υ(X,Y ), ∇XN = −ΛX,

respectively, for X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), whereas Γ(TM) denotes set of all v.f. tangent
to M and Γ(T⊥M) space of normal bundle. Next, Υ is a symmetric bilinear form, known as the
second fundamental form. It should be noted that Υ(X,Y ) = g(ΛX,Y )N , we take ΛNX as ΛX for
simplicity.

Now, we will take A ∈ Uz satisfying N = cos(t)Z1 +sin(t)JZ2, for an orthonormal vectors Z1, Z2 ∈
V(A) and 0 ≤ t ≤ π

4 is a function on M (see Proposition 3, Reckziegel (1995)). Since ξ = −JN ,
we have

N = cos(t)Z1 + sin(t)JZ2, AN = cos(t)Z1 − sin(t)JZ2,

ξ = sin(t)Z2 − cos(t)JZ1, Aξ = sin(t)Z2 + cos(t)JZ1,

from which it implies g(ξ, AN) = 0.

Here, we define a maximal U invariant subspace of TzM, z ∈M as

Qx = {X ∈ TxM | AX ∈ TxM for all A ∈ U}.

Now, we give an important lemma

Lemma 1.

For each x ∈M , we have

(1) If Nx is U-principal, then Qx = Cx.
(2) If Nx is not U-principal, there exist a conjugation A ∈ U and orthonormal vectors X,Y ∈ V(A)

such that Nx = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qx = C 	C(JX + Y ).

3. Key Lemma

We take M to be a Hopf hypersurface. Then, we have Λξ = αξ, where α is a smooth function
defined by α = g(Λξ, ξ) on M . Then,

2m−1∑
i=1

g(Aei, ei) = tr(A)− g(AN,N) = −g(AN,N),

2m−1∑
i=1

g(AX, ei)Aei =

2m∑
i=1

g(AX, ei)Aei − g(AX,N)AN = X − g(AX,N)AN,

2m−1∑
i=1

g(JAei, ei)JAX =

2m∑
i=1

g(JAei, ei)JAX − g(JAN,N)JAX

= −g(JAN,N)JAX,
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2m−1∑
i=1

g(JAX, ei)JAei =

2m∑
i=1

g(JAX, ei)JAei − g(JAX,N)JAN

= JAJAX − g(JAX,N)JAN = X − g(JAX,N)JAN.

Next, from Suh (2015), the Gauss equation follows

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ + g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX

− g(JAX,Z)JAY + g(ΛY,Z)ΛX − g(ΛX,Z)ΛY, (3.1)

for X,Y, Z ∈ Γ(TM).

Now, on contracting Y, Z in (3.1) and considering the above formualae, the Ricci tensor Ric of
Hopf r.h. M is given by

Ric(X) = (2m− 1)X −X − φ2X − 2φ2X − g(AN,N)AX −X + (trΛ)ΛX

+ g(AX,N)AN − g(JAN,N)JAX −X + g(JAX,N)JAN − Λ2X,

= (2m− 1)X − 3ζ(X)ξ − g(AN,N)AX + g(AX,N)AN

− g(JAN,N)JAX + g(JAX,N)JAN + (trΛ)ΛX − Λ2X. (3.2)

Now, we can state the consequent lemma.

Lemma 2.

Let M be a r.h. of Qm with recurrent Ricci tensor such that all eigenvalues of the Ricci tensor are
constant. Then, the Ricci tensor is parallel.

Proof:

Let us assume that all eigenvalues of the Ricci tensor are constant and take Y be a unit eigenvector
of the Ricci tensor associating to an eigenvalue λ, that is,

RicY = λY. (3.3)

Thus, one can have

g((∇XRic)Y, Y ) = g(∇X(RicY )−Ric(∇XY ), Y )

= Xλ = 0.

Again, by the assumption that M has recurrent Ricci tensor, it yields

g(∇XRicY, Y ) = ω(X)g(RicY, Y )

= ω(X)λ.

By combining this relation with the previous relation, we get ω(X)λ = 0 for X ∈ Γ(TM), which
assert that the Ricci tensor is parallel.
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4. Proof of Theorem 1

Here, we suppose that M has U-principal unit normal v.f. N , that is, AN = N or Aξ = −ξ for
A ∈ U (see Suh et al. (2016)). Thus, we can have

g(AN, ξ) = 0 and g(AN,N) = 1.

We put

AY = BY + ρ(Y )N,

whereas BY stands for the tangential element of AY and ρ(Y ) = g(AY,N) = g(Y,N) = 0. Hence,
AY = BY for Y ∈ Γ(TM) with U-principal unit normal v.f. N in Qm. Then, it follows that

Ric(X) = (2m− 1)X − 2ζ(X)ξ −AX + hΛX − Λ2X,

whereas h = tr(Λ) denotes the trace of the shape operator Λ of M in Qm.

Now, assume that Hopf r.h. M of Qm has recurrent Ricci tensor

(∇XRic)Y = ω(X)Ric(Y ),

which together with Y = ξ and using the fact of Hopf hypersurface follows

ω(X)[(2m− 2)ξ + αhξ − α2ξ] = −2φΛX − (∇XA)ξ + α(Xh)ξ

+ h(∇XΛ)ξ − (∇XΛ2)ξ,

from which we have

(−2 + hα− α2)φΛX − [−q(X)N + 2αζ(X)N ]− hΛφΛX + Λ2φΛX

= [ω(X)(2m− 2 + αh− α2)− α(Xh)− h(Xα) + (Xα2)]ξ,

where we have used

(∇XA)ξ = ∇XAξ −A∇Xξ
= (∇XA)ξ +A(∇X)ξ − g(ΛX,Aξ)N −A∇Xξ
= q(X)JAξ +Aσ(X, ξ)− g(ΛX,Aξ)N

= −q(X)N + 2αζ(X)N,

(∇XΛ)ξ = ∇X(Λξ)− Λ∇Xξ = (Xα)ξ + αφΛX − ΛφΛX,

and

(∇XΛ2)ξ = ∇X(Λ2ξ)− Λ2∇Xξ = (Xα2)ξ + α2φΛX − Λ2φΛX.

On taking scalar product with ξ, we get that the component of Reeb v.f. ξ vanishes. Thus, we are
left with

(−2 + hα− α2)φΛX − [−q(X) + 2αζ(X)]N − hΛφΛX + Λ2φΛX = 0.
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By comparing the tangential part, we arrive at

(2 + α2 − hα)φΛX = −hΛφΛX + Λ2φΛX, for all X ∈ Γ(TM). (4.1)

Now, on taking ΛX = λX, (4.1) reduced to

(2 + α2 − hα)λφX = −hλΛφX + λΛ2φX, (4.2)

Also, for a r.h. in Qm, (m ≥ 3) with U-principal normal v.f. N , we have

2ΛφΛX = α(φΛ + Λφ)X + 2φX, (4.3)

which by the virtue of ΛX = λX yields

ΛφX =
(αλ+ 2

2λ− α

)
φX. (4.4)

It follows that

Λ2φX =
(αλ+ 2

2λ− α

)2
φX. (4.5)

From this together with (4.3), (4.1) becomes

(2 + α2 − hα)λφX = −hλ
(αλ+ 2

2λ− α

)
φX + λ

(αλ+ 2

2λ− α

)2
φX.

Now, let us consider the cases on λ (λ 6= 0 and λ = 0).

case 1: λ 6= 0. Then, the above relation for µ =
(
αλ+2
2λ−α

)
φX 6= 0 implies

µ2 − hµ+ hα− α2 − 2 = 0. (4.6)

Also, the function λ satisfies

λ2 − hλ+ hα− α2 − 2 = 0. (4.7)

On equating (4.6) and (4.7), we have

(λ+ µ− h)(λ− µ) = 0.

Since, λ 6= µ, we get h = λ+µ. But, the trace of the shape operator is given by h = α+(m−1)(λ+µ).
Thus, we get h = − α

m−2 , which is a contradiction. Also, (4.3) implies

2Λ2φΛX = α(ΛφΛ + Λ2φ)X + 2ΛφX

= α
[(α

2

)
(Λφ+ φΛ)X + φX + Λ2φX

]
+ 2ΛφX. (4.8)

Now, on taking account (4.8) into (4.1), we have

(2 + α2 − hα)φΛX = −h
[(α

2

)
(Λφ+ φΛ)X + φX

]
+
[(α2

4

)
(Λφ+ φΛ)X +

(α
2

)
φX +

(α
2

)
Λ2φX + ΛφX

]
. (4.9)
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After substituting h = − α
m−2 in (4.9)[

2 +
(m− 1

m− 2

)
α2
]
φΛX =

α2

2(m− 2)
(Λφ+ φΛ)X +

( α

m− 2

)
φX

+
(α2

4

)
(Λφ+ φΛ)X +

(α
2

)
φX +

(α
2

)
Λ2φX + ΛφX,

which becomes [
3 +

(m− 1

m− 2

)
α2
]
g((φΛ− Λφ)X,Y ) =

(α
2

)
g((Λ2φ− φΛ2)X,Y ).

Now, for ΛX = λX and ΛφX = µX with µ 6= λ, this reduces to

(λ− µ)
[
3 +

(m− 1

m− 2

)
α2 +

(α
2

)
(µ+ λ)

]
φX = 0.

Since, λ and µ are distinct, we have 3 +
(

2m−3
2(m−2)

)
α2 = 0, which again arises a contradiction.

case 2: λ = 0. Thus, we have µ = − 2
α 6= 0. Then,

h = µ = − 2

α
.

Then, (4.9) gives

(4 + α2)φΛX = (Λφ+ φΛ)X +
( 2

α

)
φX +

(α2

4

)
(Λφ+ φΛ)X

+
(α

2

)
φX +

(α
2

)
Λ2φX + ΛφX,

which is equivalent to

(α2 + 5)(φΛ− Λφ) =
(α

2

)
(Λ2φ− φΛ2).

Again, ΛX = λX = 0 and ΛφX = µφX with µ = −α
2 yields α2 + 4 = 0 which again gives a

contradiction. This assert that there do not exist any Hopf r.h. in Qm with recurrent Ricci tensor
and U-principal normal v.f. This completes the proof of Theorem 1.

5. Proof of Theorem 2

First suppose that M has recurrent Ricci tensor with U-isotropic unit normal v.f. N . Since, unit
normal v.f. is U-isotropic, we have the following relations (Suh et al. (2016))

g(AN, ξ) = 0, g(AN,N) = 0, g(Aξ, ξ) = 0, g(Aξ,AN) = 0.

Thus, we may take

AN = BN + ρ(N)N,
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whereas BN stands for the tangential element ofAN and ρ(N) = g(AN,N) = 0. Hence,AN = BN .
From this, it follows that

∇XAN = (∇XA)N +A∇XN
= q(X)JAN −AΛX, (5.1)

∇XAξ = ∇XAξ − σ(X,Aξ)

= (∇XA)ξ +A∇Xξ − g(ΛX,Aξ)N

= −q(X)AN +AφΛX + αζ(X)AN − g(ΛX,Aξ)N. (5.2)

On taking account (5.1) and (5.2) in the hypothesis of our assumption of recurrent Ricci tensor
(∇XRic)Y = ω(X)Ric(Y ), we get

ω(X)(RicY ) = −3ζ(Y )φΛX − 3g(φΛX,Y )ξ − g(Y,AΛX)AN − g(Y,AN)AΛX

+ [g(Y,AφΛX) + αζ(X)g(Y,AN)]Aξ + g(AY, ξ)[AφΛX

+ αζ(X)AN − g(ΛX,Aξ)N ] + (Xh)ΛY + h(∇XΛ)Y − (∇XΛ2)Y.

Moreover, considering Y = ξ with the condition of Hopf hypersurface and using the fact
g(ξ, AN) = 0 and g(Aξ, ξ) = 0, we arrive at

ω(X)[(2m− 4)ξ + h(αξ)− α2ξ] = −3φΛX − g(Aξ,ΛX)AN + g(Aξ, φΛX)Aξ

+ (Xh)(αξ) + h(∇XΛ)ξ − (∇XΛ2)ξ. (5.3)

Furthermore, we have the following relations

(∇XΛ)ξ = ∇X(Λξ)− Λ∇Xξ = (Xα)ξ + αφΛX − ΛφΛX,

(∇XΛ2)ξ = ∇X(Λ2ξ)− Λ2∇Xξ = (Xα2)ξ + α2φΛX − Λ2φΛX,

g(AφΛX, ξ) = g(φΛX,Aξ) = g(JΛX,Aξ) = g(ΛX,AN).

From this, it follows that

−3φΛX − g(Aξ,ΛX)AN + g(AN,ΛX)Aξ + (Xh)(αξ) + h[(Xα)ξ + αφΛX − ΛφΛX]

−[(Xα2)ξ + α2φΛX − Λ2φΛX] = ω(X)[(2m− 4)ξ + h(αξ)− α2ξ].

One can see, on taking scalar product with ξ, the coefficient of Reeb v.f. is zero. Hence,

(hα− 3− α2)φΛX − g(Aξ,ΛX)AN + g(AN,ΛX)Aξ − hΛφΛX + Λ2φΛX = 0. (5.4)

Moreover, we have

2ΛφΛX = α(φΛ + Λφ)X + 2φX − 2g(X,AN)Aξ + 2g(X,Aξ)AN. (5.5)

Remark 1.

It is noted that, (Proposition 6.1, Berndt et al. (2013)) tells if the Λ commutes with φ, that is,
(φΛ = Λφ) then, the normal v.f. of M in Qm is U-isotropic.
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So, let us assume φΛ = Λφ. Then, for any X ∈ Q, g(X,Aξ) = 0 and g(X,AN) = 0 with ΛX = λX

in (6.4), we see

(3 + α2 − hα)λ+ hλ2 + λ3 = 0.

case 1: λ 6= 0, the above equation reduces to

λ2 − hλ− (3 + α2 − hα) = 0. (5.6)

Also, using φΛ = Λφ and ΛX = λX, (5.5) reduces to

λ2φX = α(λφX) + φX,

or equivalently

λ2 − αλ− 1 = 0. (5.7)

From here, we have tr(Λ) = h = α. On equating (5.5) and (5.6) with h = α, we get a contradiction.

Using (Proposition 4.1, Berndt et al. (2013)), all of the above discussion summarize the proof
of Proposition 1 which says that the tube over totally geodesic CP k in Qm(m = 2k) never has
recurrent Ricci tensor.

Now, we take the distribution Q⊥. Then, from the Lemma 1, Q⊥ = C 	 Q = span {AN,Aξ} and
assuming φΛ = Λφ on the distribution Q⊥, one can easily get that the orthogonal distribution Q⊥

is invariant by the shape operator Λ.

Now, we may put X = AN in (5.5). Then,

2ΛφΛAN = α(φΛAN +AφAN) + 2φAN − 2Aξ,

which together with the assumption φΛ = Λφ on Q⊥ and considering ΛAN = λAN yields

λ2 = αλ,

which arises two cases either λ = 0 or λ = α.

Futhermore, since on the distribution Q, AN ∈ Q, we have AX ∈ TpM,p ∈ M . So, (5.5) with
g(X,Aξ) = 0 and g(X,AN) = 0 for X ∈ Q gives

2ΛφΛX = α(Λφ+ φΛ)X + 2φX.

Now, we take an orthonormal basis {Xi}2(m−2)1 in Q such that AXi = λXi(i = 1, 2, ...(m − 2)).
Then, from above one, we have

ΛφXi =
(αλi + 2

2λi − α

)
φXi.

Since, λ = 0 or λ = α, the matrix of the shape operator can be given by block diagonal form

Λ = BD(α,M1,M2,M3),
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where, BD denotes for the block diagonal matrix such that M1 (respectively M2,M3) is the di-
agonal matrix with the entries 0(α) (respectively λi, µi) of order 2 (respectively m− 2,m− 2) for
i = 1, 2, ...,m− 1.

Further, for any X,φX ∈ Q, we put ΛX = λX and ΛφX = µφX,

µ =
αλ+ 2

2λ− α
. (5.8)

Then, (5.4) becomes

(hα− 3− α2)λφX − λg(Aξ,X)AN + λg(AN,X)Aξ − hλµφX + λµ2φX = 0,

or

(3 + α2 − hα)λ+ hλµ− λµ2 = 0,

where, we have used g(X,Aξ) = 0 and g(X,AN) = 0. But since λ 6= 0, we have (3 + α2 − hα) +

hµ− µ2 = 0, which is a quadratic equation given as

x2 − hx− (3 + α2 − αh) = 0, for x = µ. (5.9)

Now, equation (5.9) have two distinct principal curvatures denoted by λ, µ. Thus, tr(Λ) = h =

λ+ µ = α+ (m− 2)h implies

h = α+ (m− 2)h. (5.10)

On the other hand,

hα− α2 = [α+ (m− 2)(λ+ µ)]α− α2 = (m− 2)hα.

Furthermore, using ΛAξ = αAξ and ΛAN = αAN

h = λ+ µ = 3α+ (m− 2)(λ+ µ) (5.11)
= 3α+ (m− 2)h. (5.12)

On combining (5.10) and (5.11), we get α = 0 which further gives h(m− 3) = 0.

Let us take m ≥ 4 then, the trace of shape operator vanishes, that is, λ = −µ. Moreover, from (5.9)
we may put λ = −

√
3 tan r and µ =

√
3 cot r. Further, we know that ρ = 0 or ρ = α by the condition

of AN,Aξ. On summing up all these results, we take α = 0, ρ = 0, λ = −
√

3 and µ =
√

3 with
multiplicities 1, 2, (m - 2) and (m - 2), respectively.

case 2: λ = 0. Then, (5.8) yields µ = − 2
α . Then, the general matrix of Λ becomes

Λ = BD(α,M1,M2,M3),

where, BD denotes for the block diagonal matrix such thatM1 (respectivelyM2,M3) is the diag-
onal matrix with the entries 0(α) (respectively 0, − 2

α ) of order 2 (respectively m − 2,m − 2) for
i = 1, 2, ...,m− 1.

Moreover, h = λ+ µ = α+ (m− 2)λ+ µ becomes − 2
α = α− 2(m−2)

α which gives α =
√

2(m− 3).
Thus, on distribution Q⊥, we have principal curvatures
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α =

√
2(m− 3), (with multiplicity 1),

0, (with multiplicity 2),
0, (with multiplicity (m− 2)),
− 2
α = − 2√

2(m−3)
, (with multiplicity (m− 2)).

Then, the trace of the shape operator corresponding to an eigenvalue 0 is given by

h =
√

2(m− 3)− 2(m− 2)√
2(m− 3)

= − 2√
2(m− 3)

,

and the respective matrix has the block diagonal form Λ = BD(α,M1,M2,M3), where BD de-
notes for the block diagonal matrix such that M1 (respectively M2,M3) is the diagonal matrix
with the entries 0 (respectively 0, − 2

α) of order 2 (respectively m− 2,m− 2).

If we have principal curvatures
α =

√
2(m− 3), (with multiplicity 1),

α, (with multiplicity 2),
0, (with multiplicity (m− 2)),
− 2
α = − 2√

2(m−3)
, (with multiplicity (m− 2)).

Then, the trace of the shape operator corresponding to an eigenvalue α is given by

h = 3
√

2(m− 3)− 2(m− 2)√
2(m− 3)

= − 2(2m− 7)√
2(m− 3)

,

and the respective matrix has the block diagonal form Λ = BD(α,M1,M2,M3), where BD de-
notes for the block diagonal matrix such that M1 (respectively M2,M3) is the diagonal matrix
with the entries α (respectively 0, − 2

α) of order 2 (respectively m− 2,m− 2).

So, we write
α =

√
2(m− 3) and Tα = {ξ},

γ = 0 and Tγ = {Aξ,AN},
λ = 0 and φTλ = Tµ,

µ = − 2(m−2)√
2(m−3)

and dimTλ = dimTµ = m− 2.


This completes the proof of Theorem 2.

6. Conclusion

One of the great interest in the submanifold theory is to develop basic fundamental relationships of
a submanifold. In this work, using the fundamental equations for r.h, we generalized the result of
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Suh (2015). The findings motivate further studies to obtain general geometric fundamental prop-
erties for r.h. in the complex quadric Qm, like (Berndt et al. (2013), Kim et al. (2007), Suh (2015,
2014), Suh et al. (2016)).
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