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Abstract 
 

This paper studies a constitutive equation for blood with the transport of nanoparticles in a 

stenosed microvessel. The flow of blood through a bell-shaped stenosed micro blood vessel 

has been investigated with an importance of permeable walls that treats blood as non-

Newtonian fluid by using K-L model. This model is more appropriate than other non-

Newtonian models because K-L model involve three parameters such as plasma viscosity, 

yield stress and one other chemical variable while casson model involves only one parameter 

i.e. yield stress. In the present paper, the effective longitudinal diffusion of nanoparticles has 

been studied in stenosed blood vessel considering the contribution of molecular and 

convective diffusion based on Taylor's theory.  Also we analyze the flow characteristics of 

blood such as velocity, flow rate and effective diffusion during a nanoparticle assisted drug 

delivery process through a stenosed permeable microvessel. An explicit expression has been 

derived for velocity, flow rate and effective diffusion of nanoparticles depending non-linearly 

on rheological parameter, stenosis height and plasma viscosity. It has been shown that for a 

given values of rheological parameter, stenosis height and plasma viscosity, fluid velocity is 

maximum at the central axis and flow rate is minimum at the axis of symmetry. Also it has 

concluded that the effective diffusion of nanoparticles is maximum at the vessel walls and 

minimum at the axis of symmetry.  
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1.  Introduction 
 

Nanoparticles hold significant promise as a means of next generation of medicine that allows 

for the intravascular delivery of drugs with contrast agents. Nanoparticles assisted drug 
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delivery provides a mechanism for solving the problems associated with conventional drug 

delivery systems. To improve the delivery efficiency of nanoparticles, it is very important to 

study their transport in microvessels and deposition in blood flow. The transport of 

nanoparticles in microvesels is of great importance in several fields from chemical to 

environmental and biomedical engineering. Nanoparticles are nanometer sized particles and 

typically made of metals, oxides, carbides or carbon nanotubes. Due to the small size of 

nanoparticles, the dynamic delivery process, the complex vascular environment and 

computational fluid particle dynamics, it is very challenging to explore these phenomena in 

blood vessels. Spherical particles larger than 200 nm can be easily filtered by the liver and 

particles smaller than 10nm can be quickly filtered by kidney. Thus, particles with diameters 

of 10-200 nm are the ideal drug carriers in vascular circulatory system. The properties of 

nanoparticles such as size, shape and surface chemistry play an important role in their 

transport and deposition. 

 

Blood is a complex fluid made up of components such as erythrocytes, monocytes, platelets, 

proteins, fibers etc. In small channels, blood represents the two-phase nature, one is 

peripheral layer of plasma and other is a core region of suspension of erythrocytes. This 

peripheral layer shows Newtonian nature and core region shows non-Newtonian nature of 

fluid (Bugliorello and Sevilla, 1970; Cokelet, 1972). The study of blood flow of non-

Newtonian fluids with the longitudinal transport of nanoparticles in a stenosed microvessls is 

very interesting topic because of the fact that the number of cardiovascular diseases such as 

heart attacks, strokes, ischemia, angina pectoris, atherosclerosis are the leading cause of 

deaths. At different locations of the cardiovascular system, the unnatural and abnormal 

growth in the microvessels walls termed as stenosis. In cardiac related problems, the effected 

blood vessels get harden as an accumulation of fatty substances in inner walls. In drug 

delivery, the nanoparticles must reach the sites of diseases via convective and diffusive 

transport within the microvessels. To reach the target diseased site, nanoparticles have to 

marginate towards the vascular wall. Though increase in their concentration increases the 

number of nanoparticles being delivered. At the target site, the concentration of nanoparticles 

should be high enough to kill the diseased cells. Thus the study of nanoparticle distribution is 

important in evaluating therapeutic efficacy and considers to be the top priority in 

nanoparticle drug delivery modeling (Sanhai et al. 2008; Almeida et al. 2011). 

 

Sharp (1993) derived explicit expressions for effective longitudinal diffusion considering 

non-Newtonian fluids with different rheological laws such as for a casson, bingham plastic 

and power-law fluid. Decuzzi et al. (2006) revisited the Taylor and Aris theory (1953) to 

derive the effective longitudinal diffusion for a Newtonian fluid. Tan et al. (2012) studied the 

influence of red blood cells on nanoparticles transport and dispersion. Later, Gentile (2008 

and 2010), studied the longitudinal transport of nanoparticles in terms of effective diffusivity 

with an emphasis on the permeability of the capillary and the rheology of blood. Shaw et al. 

(2014) contribute to the fundamental understanding and knowledge of how the particulate 

nature of blood influences nanoparticle delivery. They provide new insights on the design of 

nanoparticles for drug carriers in nanomedicine. 

 

Many authors have studied the blood flow in stenosed blood vessels by using non-Newtonian 

fluid models such as power law fluid, herschel-bulkley fluid, casson fluid, couple stress fluid, 

carreau-yasuda fluid cited in Chaturani (1985 and 1986); Misra (2006). Kuang and Luo 

(1992) proposed an equation of blood flow having three parameters such as yield stress, 

plasma viscosity and one other chemical variable named as K-L model. They suggested that 

K-L model is one of the best model for blood flow in human. Ashrafizaadeh et al. (2009) 
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introduced K-L model for lattice Boltzmann blood flow simulation. Later, Sriyab (2014) 

studied the blood flow characteristics such as flow rate, skin friction and resistance to blood 

flow in narrow arteries with bell-shaped mild stenosis by using K-L model. 

 

The main purpose of the present work is to study the longitudinal transport of nanoparticles 

injected into the blood stream in terms of effective diffusivity with the importance of 

permeability of stenosed microvessel walls and the rheology of blood. In our work, a 

mathematical model is developed to analyze the blood flow in microvessel at low shear rate 

with mild bell-shaped stenosis. Blood is treated as non-Newtonian K-L model. The effects of 

rheological parameter, plasma viscosity, yield stress, permeability of microvessel and radius 

of the nanoparticles on effective longitudinal diffusion of the nanoparticles are analyzed in 

the present study. 

  

2. Formulation of the problem 
 

Consider a cylindrical polar coordinate system (        ) where    and    are along the 

radius of a microvessel and along the length of a microvessel respectively and    represents 

the circumferential direction. Also we consider the steady laminar flow and non-Newtonian 

incompressible viscous fluid described by K-L model flowing in the    axial direction 

through a circular microvessel. The microvessel walls are permeable to the fluid and assumed 

to be rigid for the solute (nanoparticles). Due to permeability, fluid flow laterally across the 

vessel fenestration. The bell-shaped mild stenosis in microvessel is studied and the geometry 

of segment of microvessel with mild bell-shaped stenosis is shown in figure 1 and is defined 

as follows: 

 

                                                           (  )    (         

) ,                                     (1) 

 

where   (  ),    are the radius of microvessel with and without stenosis respectively; a and b 

are non dimensional parameters defined as   
 

  
 ,   

  

  
  

 ;   is the stenosis height,   

represents the shape of stenosis and    
 
 is the length of stenosis in microvessel. 

 

 
 

Figure 1. The transport of nanoparticles in a stenosed microvessel 

 

Since the blood flow in microvessels is slow and steady, so magnitude and inertial forces are 

negligible and only one component of velocity parallel to the axis. The equation of continuity 

and equation of motion are given by 
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   is the pressure,   is the density of the fluid,    is the blood velocity and   is the length of 

microvessel. 

 

The constitutive equation for K-L model is defined as follows: 
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where   
  ,    and    are functions of hematocrit, plasma viscosity and other chemical 

variable respectively,  ̇ is the shear rate,    is the shear stress. 

 

The velocity and volumetric flow rate [Kuang (1992)] can be expressed in terms of 
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Here it is assumed that fluid also flows laterally across the vessel fenestration. The fluid 

lateral flux does not modify the velocity within the channel but reduces the mean velocity   

across the permeable walls. Mass continuity for an incompressible fluid flow is given by 

[Decuzzi et al. (2006)] 

 

                                                           
   

   
       ,                                                            (8) 

 

where      denotes the volume flow rate along the permeable wall per unit length,    is the 

perfusing velocity which is defined as       (    ),    is hydraulic conductivity and    

is the interstitial fluid pressure. Fluid depends on    ,    , inlet and outlet pressures    and    

respectively when blood flows through permeable microvessel.  

 

Non-dimensional scheme are 
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3.  Solution of the problem 
 

Solve equation (4) under the boundary condition,   is finite at    , we have 
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Kuang (1992) demonstrated that    is the core radius of cylindrical tube within      ,    is a 

radius at which      and shear stress at the wall of the tube is   . From equation (5), we 

find the most general form of K-L model in non-dimensional form 
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where    
  

 

   
    is a parameter with unit of stress. 

 

The velocity profile and flow rate of K-L model is derived as 
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where 
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The mean velocity is derived as 
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3.1.  Pressure Gradient in Permeable Capillaries 

 

Solve equation (8) by using method of power series solution under the boundary conditions  

     at       and      at    , we have 
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3.2. The Effective Longitudinal Diffusion 

 

Taylor and Aris (1953) introduced the idea of an effective longitudinal diffusion, for which 

expression is followed by Sharp (1993) as 

 

                                                       
 

 

 

  
( 

  

  
)  

 

  

  

  
 ,                                                        (15) 

 

where  ( ) is the non-uniform axial velocity and  (   ) is the nanoparticle concentration, 

   is the molecular diffusion coefficient.   (   ) denotes the concentration within the core 

region of microvessel and   (   ) denotes the concentration in the cell-free layer. Boundary 

conditions for both regions are given as 
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Under above boundary conditions, we solve equation (13) for    and   . 

 

The flux of the solute across a section is given as 
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The effective diffusion coefficient is readily derived as 
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4. Results and Discussions 
 

The most important parameters for estimating the transport of nanoparticles in stenosed blood 

vessel are stenosis height  , plasma viscosity    and rheological parameter     . These made a 

great change in flow characteristics such as velocity, volumetric flow rate and effective 

longitudinal diffusion. The expressions are derived for velocity  , flow rate   and effective 

longitudinal diffusion       ⁄ . The expression for effective longitudinal diffusion derived 

in equation (17) comprises two terms: a molecular diffusion and a convective term. The 

second term depends on the rheology of blood expressed through     . The axial velocity for 

K-L fluid model are shown in Figure 2-4. Figure 2 depicts that the variation of axial velocity 

with radial coordinate for different values of the stenosis height. It is observed that the axial 

velocity decreases with increase of stenosis height. 

 

The effect of plasma viscosity on axial velocity is shown in Figure 3. As the plasma viscosity 

   increases, the axial velocity changes parabolically along the radius of the vessel. It is also 

shown that the axial velocity decreases with increase in plasma viscosity. Figure 4 depicts 

that the variation of axial velocity with radial coordinate for different values of rheological 

parameter    . As     increases i.e., the radius of core region increases, the axial velocity along 

radial coordinate decreases significantly. It is also shown that the velocity in core region is 

flat in nature. This means that the velocity profile approaches a more parabolic shape and 

approaches Newtonian like profile [Ashrafizaadeh et al. (2009)] with decrease of rheological 

parameter, plasma viscosity and the stenosis height. Also one should note that the 

dimensionless velocity profiles for non-Newtonian Casson-like fluid [Gentile et al. (2008)] 

and Herschel Bulkley fluid model [Misra et al. (2006)] are identical in nature. These 

numerical results are confirmed by experimental observation which states that the blood is 

almost Newtonian in absence of stenosis height, plasma viscosity and rheological parameter. 

 

The variations of volumetric flow rate with axial distance are shown in Figure 5-7. From 

Figure 5, it is observed that the volumetric flow rate decreases with increase of stenosis 

height in microvessel. At a fixed value of stenosis height   , blood flow rate attains its 

minimum at maximum height of the stenosis. The effect of plasma viscosity on volumetric 

flow rate is shown in figure 6. It is shown that blood flow rate decreases significantly with 

increase of plasma viscosity and affected only on stenotic region of blood vessels. Figure 7 

depicts that the variation of blood flow rate with axial distance for different values of 

rheological parameter      

 

It is observed that blood flow rate decreases with increase of     , and at a fixed value of     , 

blood flow rate attains its minimum at maximum height of the stenosis. Therefore, it is 

concluded the volumetric flow rate of blood decreases with increase of stenosis height, 
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plasma viscosity as well as rheological parameter. In Casson and Herschel-Bulkley fluid 

model, the blood flow rate also decreases with increase of stenosis height and rheological 

parameter. Also Sriyab (2014) was derived the similar result for non-Newtonian K-L fluid 

model. Therefore, we can say that the nature of variation in blood flow rate is similar with the 

case of other non- Newtonian fluid models. 

 

The results for the effect of non-Newtonian blood behavior on effective diffusion are shown 

in figure 8-10. The effect of stenosis height on effective diffusion       ⁄  is shown in 

figure 8. It shows that the effective diffusion decreases with increase of stenosis height   and 

it has minimum at maximum height of the stenosis. The influence of plasma viscosity on the 

effective longitudinal diffusion       ⁄  is shown in figure 9, where the variation along the 

channel of the effective diffusivity is plotted. As    increases, the reduction in effective 

diffusivity becomes more and more important. Figure 10 is plotted for the effect of     on 

effective diffusion in stenotic portion of the blood vessel. It is shown that the ratio       ⁄  

is minimum at maximum height of the stenosis and maximum at the wall of the blood vessel. 

An increase in     leads to a reduction of the term  (  ) and thus of       ⁄  . Therefore, it is 

concluded that as     increases, the core region of the vessel with a flat velocity profile grows 

and thus reduce the cell-free layer. Also at fixed     , effective diffusion       ⁄  decrease 

upto reach its minimum and then increase upto reach its maximum at the wall of the blood 

vessel. In Decuzzi et al. (2006) and Sharp (1993), it was shown that the rheology of the blood 

causes a reduction of the effective diffusion who showed a steady decrease in       ⁄  with 

a growing     . 

 

 

 
Figure 2. Variation of axial velocity with radial coordinate for different stenosis height a 
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Figure 3. Variation of axial velocity with radial coordinate for different plasma viscosity    

 

 

 

 

 
          Figure 4. Variation of axial velocity with radial coordinate for different rheological parameter    
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          Figure 5. Variation of flow rate with axial distance for different stenosis height a 

 

 

 

 
           Figure 6. Variation of flow rate with axial distance for different plasma viscosity    
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        Figure 7. Variation of flow rate with axial distance for different rheological parameter    

 

  

 

 
Figure 8: Variation of effective diffusion with axial distance for different stenosis height a 
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      Figure 9. Variation of effective diffusion with axial distance for different plasma viscosity    
       

 

 
 Figure 10. Variation of effective diffusion with axial distance for different rheological parameter    

 

 

5. Conclusions 
 

Taylor and Aris' coefficient of diffusion has been recalled to derive the expression of 

effective diffusion accounting for both the diffusive and convective contribution. Taylor and 

Aris' approach is valid in the limit of large times or long channels i.e. in the steady state limit. 
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In our study, three governing parameters have been introduced namely rheological parameter 

    , plasma viscosity    and stenosis height   . In the present paper, we have studied the flow 

characteristics of human blood during transportation of nanoparticles in a stenosed 

microvessel treated blood as non-Newtonian K-L model. 

 

The proposed model is an improved modification of casson model because K-L model 

involve more parameters than casson model. Therefore, it gives more details about the flow 

characteristics of blood than other non-Newtonian fluid models. Analytical expressions for 

velocity, flow rate and longitudinal effective diffusion have been derived using appropriate 

boundary conditions and the computed results are presented and discussed graphically. The 

above study shows that the velocity is maximum at the central axis and flow rate is minimum 

at the axis of symmetry. Also it is observed that the effective diffusion       ⁄  depends on 

the stenosis height  , plasma viscosity    and rheological parameter     . Therefore, using 

relevant values for    ,    and  ,       ⁄  can be reduced significantly as the particle moves 

from larger to smaller blood vessel. 

 

These findings provide important characteristics such as velocity, flow rate and effective 

diffusion that affect the transport of nanoparticles in blood vessels. A number of approaches 

have been taken to better understand how such characteristics of nanoparticles affect their 

applicability as a drug delivery system. The nanoparticles ability to target and enter tissues 

from blood is highly dependent on their behavior under blood flow. Therefore, this model 

could be used for informing new nanoparticles design and to predict general and specific 

uptake properties under blood flow. 
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