An Interpolation Process on the Roots of Ultraspherical Polynomials

1R. Srivastava and 2Yamini Singh

Department of Mathematics and Astronomy
Lucknow University
Lucknow, 226025
Lucknow, India
1rekhasrivastava4796@gmail.com, 2singh.yamini02@gmail.com

Received: November 10, 2017; Accepted: May 28, 2018

Abstract

The paper is devoted to studying a Pál-type interpolation problem on the roots of Ultraspherical polynomials of degree n-1 with parameter k+1 on the closed interval -1 to 1. The aim of this paper is to find a unique interpolatory polynomial of degree at most m equal to 2n+2k+3 satisfying the interpolatory conditions that is, function values of the polynomial of degree m at the zeros of the function values of the ultraspherical polynomials and the first derivative values of the polynomial of degree m at the zeros of the first derivative values of the ultraspherical polynomials. We will use the special type of Hermite-boundary conditions at the end points of interval -1 to 1, which are defined by, the \(l^{th} \) derivative of the polynomial of degree m at the zeros of the boundary point 1, where \(l \) goes from 0 to k+1 and the \(l^{th} \) derivative of the polynomial of degree m at the zeros of the boundary point -1, where \(l \) goes from 0 to k+2. Further, we will prove the existence, uniqueness and explicit representation of the interpolatory polynomial. For, the prove of order of convergence of the interpolatory polynomial, we will prove the order of convergence of the first derivative of the first kind fundamental polynomials and order of convergence of the first derivative of the second kind fundamental polynomials.

Keywords: Pál-type interpolation; Ultraspherical polynomials; Lagrange interpolation; Fundamental polynomials; Hermite-type boundary conditions; Explicit form; Order of convergence

MSC 2010 No.: 41A10, 97N50
1. Introduction

Balázs (1961) introduced the investigation of weighted (0,2) interpolation and he showed that using a suitable weight function this problem has a unique solution when the nodal points are the roots of the ultraspherical polynomials. He also proved a convergence theorem. Further, Lenard (2001) has considered the function values are interpolated at the zeros of the polynomial $P_{n-1}^{(k+1)}(x)$ and the first derivative values are interpolated at the zeros of the polynomial $P_{n-1}^{(k)}(x)$ with Hermite conditions on the interval $[-1, 1]$. Lenard (2004) has studied a modified Pál type interpolation problem on Laguerre abscissas. Later, many authors Bahadur (2012) has considered two pairwise disjoint sets, which are the zeros of $P_n(x)$ and $\Pi_n(x)$ with two additional conditions. Srivastava (2014) has discussed an interpolation process on the roots of Hermite polynomials on infinite interval. Lenard (2013) has considered the Pál type interpolation problem on two sets of nodes (one consists of the zeros of a polynomial p_n of degree n, while the elements of the other one are the zeros of p_n') different interpolation conditions are prescribed simultaneously. Later, Mathur and Kumar (2017) have discussed the weighted (0,2) interpolation polynomials on the roots of all classical orthogonal polynomials.

In this paper, we study the (0;1) interpolation problem with Hermite conditions at interval $[-1, 1]$. Let the set of knots be given by:

$$-1 = x_n < x_n^* < x_{n-1}^* < \ldots < x_1^* < x_0 = 1, \quad n \geq 1,$$

where $\{x_i\}_{i=1}^n$ and $\{x_i^*\}_{i=1}^{n-1}$ are the roots of ultraspherical polynomials $P_{n-1}^{(k+1)'}(x)$ and $P_{n-1}^{(k+1)}(x)$ respectively, on the knots (1) there exist a unique polynomial $R_m(x)$ of degree at most $m = 2n + 2k + 3$ satisfying the interpolatory conditions

$$R_m(x_i) = y_i \quad (i = 1, 2, \ldots, n),$$

$$R'_m(x_i^*) = y_i' \quad (i = 1, 2, \ldots, n - 1),$$

with (Hermite) boundary conditions

$$R^{(l)}_m(1) = y_1^{(l)} \quad (l = 0, 1, \ldots, k + 1),$$

$$R^{(l)}_m(-1) = y_{-1}^{(l)} \quad (l = 0, 1, \ldots, k + 2),$$

where y_i, y_i', $y_1^{(l)}$, $y_{-1}^{(l)}$ are arbitrary real numbers and k is a fixed non-negative integer. Here $P_{n-1}^{(k+1)}(x)$ denotes the Ultraspherical polynomial of degree $n-1$ with the parameter $k+1$. The convergence of this interpolation process was studied by Xie (1988) proved that if $f \in C^r[-1, 1]$ for $x \in [-1, 1]$

$$|f(x) - R_{2n+1}(x; f)| = O(n^{-r+1})w(f^{(r)}; \frac{1}{n}).$$

For $k \geq 1$ Lenard (1999) proved that if $f \in C^r[-1, 1]$, for $x \in [-1, 1]$,

$$|f(x) - R_m(x; f)| = O(n^{k-r+\frac{1}{2}})w(f^{(r)}; \frac{1}{n}).$$
For \(k \geq 0 \) Lenard (2001) proved that if \(f \in C^r[-1,1], \) for \(x \in [-1,1], \)
\[
|f'(x) - R'_m(x; f)| = w(f^{(r)}; \frac{1}{n})O(n^{k-r+\frac{5}{2}}),
\]
where \(w(f^{(r)}; .) \) denotes the modulus of continuity of the \(r^{th} \) derivative of the function \(f(x). \) If \(f \in C^{k+2}[-1,1], \) \(f^{k+2} \in Lip_\alpha, \alpha > \frac{1}{2}, \) then \(R_m(x; f) \) and \(R'_m(x; f) \) uniformly converge to \(f(x) \) and \(f'(x) \) respectively on \([-1,1].\)

\[1 \]

2. Preliminaries

We shall use the some well known properties and results Szego (1939) of the Ultraspherical polynomials.

\[
(1 - x^2)P_n^{(k)\prime\prime}(x) - 2x(k+1)P_n^{(k)\prime}(x) + n(n+2k+1)P_n^{(k)}(x) = 0,
\]
where \(P_n^{(k)\prime}(x) = \frac{n+2k+1}{2}P_{n-1}^{(k+1)}(x), \)
\[
|P_n^{(k)}(x)| = O(n^k), \quad x \in [-1,1],
\]
\[
(1 - x^2)^{\frac{k}{2} + \frac{1}{2}}|P_n^{(k)}(x)| = O\left(\frac{1}{\sqrt{n}}\right).
\]

The fundamental polynomials of Lagrange interpolation are given by:

\[
l_j(x) = \frac{P_{n-1}^{(k+1)\prime}(x)}{P_{n-1}^{(k+1)\prime\prime}(x_j)(x-x_j)},
\]
where
\[
\tilde{h}_{n-1}^{(k+1)} = \frac{2^{2k+2}\Gamma(2(n+k+1))}{\Gamma(n)\Gamma(n+2k+2)} \sim C_1, \quad (1- x^2)(I_{n-1}^{(k+1)\prime}(x_j)) \sim x_j,
\]
\[
h_{\nu}^{(k+1)} = \frac{2^{2k+3}}{2\nu + 2k + 3} \frac{\Gamma(2(\nu+k+2))}{\Gamma(\nu+1)\Gamma(\nu+2k+3)} \sim C_2 \quad (\nu > 0),
\]
\[
\sim \frac{1}{\nu} \quad (\nu = 0),
\]
where the constants \(C_1 \) and \(C_2 \) are depend on \(k. \) If \(x_1^* > x_2^* > \ldots > x_{n-1}^* \) are the roots of \(P_{n-1}^{(k+1)}(x). \) Then, the following relations hold Szego(1939).

\[
(1 - x_j^2) \sim \begin{cases} \frac{j^2}{n^2} \quad (x_j \geq 0), \\ \frac{(n-j)^2}{n^2} \quad (x_j < 0), \end{cases}
\]
We shall write $R_m(x)$ satisfying (2), (3), (4) and (5) as

$$R_m(x) = \sum_{j=1}^{n} A_j(x) y_j + \sum_{j=1}^{n-1} B_j(x) y_j' + \sum_{j=0}^{k+1} C_j(x) y_1^{(l)} + \sum_{j=0}^{k+2} D_j(x) y_{-1}^{(l)},$$

(20)

where $A_j(x)$ and $B_j(x)$ are the fundamental polynomials of first and second kind respectively, $C_j(x)$ and $D_j(x)$ are the fundamental polynomials which correspond to the boundary conditions each of degree $\leq 2n + 2k + 3$, uniquely determined by the following conditions:

for $j = 1, 2, \ldots, n$

$$\begin{cases}
A_j(x_i) = \delta_{ji} & (i = 1, 2, \ldots, n), \\
A_j'(x_i) = 0 & (i = 1, 2, \ldots, n-1), \\
A_j^{(l)}(1) = 0 & (l = 0, 1, \ldots, k+1), \\
A_j^{(l)}(-1) = 0 & (l = 0, 1, \ldots, k+2),
\end{cases}$$

(21)

for $j = 1, 2, \ldots, n-1$

$$\begin{cases}
B_j(x_i) = 0 & (i = 1, 2, \ldots, n), \\
B_j'(x_i) = \delta_{ji} & (i = 1, 2, \ldots, n-1), \\
B_j^{(l)}(1) = 0 & (l = 0, 1, \ldots, k+1), \\
B_j^{(l)}(-1) = 0 & (l = 0, 1, \ldots, k+2),
\end{cases}$$

(22)

for $j = 0, 1, \ldots, k+1$

$$\begin{cases}
C_j(x_i) = 0 & (i = 1, 2, \ldots, n), \\
C_j'(x_i) = 0 & (i = 1, 2, \ldots, n-1), \\
C_j^{(l)}(1) = \delta_{jl} & (l = 0, 1, \ldots, k+1), \\
C_j^{(l)}(-1) = 0 & (l = 0, 1, \ldots, k+2),
\end{cases}$$

(23)

for $j = 0, 1, \ldots, k+2$

$$\begin{cases}
D_j(x_i) = 0 & (i = 1, 2, \ldots, n), \\
D_j'(x_i) = 0 & (i = 1, 2, \ldots, n-1), \\
D_j^{(l)}(1) = 0 & (l = 0, 1, \ldots, k+1), \\
D_j^{(l)}(-1) = \delta_{jl} & (l = 0, 1, \ldots, k+2).
\end{cases}$$

(24)

We have proved the Explicit form, which are given in the following Lemmas.

Lemma 3.1.

The fundamental polynomial $A_j(x)$, for $j = 1, 2, \ldots, n$ satisfying interpolatory conditions (21) are
given by:

\[
A_j(x) = \frac{(1 - x^2)^{k+2} \{ (1 + x)^3 P_{n-1}^{(k+1)}(x) l_j(x) - P_{n-1}^{(k+1)'}(x) \int_1^x l_j(t)(1 + t)^3 dt \}}{(1 - x_j^2)^{k+2} (1 + x_j)^3 P_{n-1}^{(k+1)}(x_j)}.
\]

(25)

Lemma 3.2.

The fundamental polynomial \(B_j(x)\), for \(j = 1, 2, \ldots, n - 1\) satisfying interpolatory conditions (22) are given by:

\[
B_j(x) = \frac{(1 - x^2)^{k+2} P_{n-1}^{(k+1)'}(x) \int_1^x l_j(t)(1 - t)^2 dt}{(1 - x_j^2)^{k+2} (1 - x_j^*)^2 P_{n-1}^{(k+1)'}(x_j^*)}.
\]

(26)

Lemma 3.3.

The fundamental polynomial which correspond to the boundary condition \(C_j(x)\), for \(j = 0, 1, \ldots, k + 1\) satisfying interpolatory conditions (23) are given by:

\[
C_j(x) = (1 - x)^{k+3} (1 + x) P_{n-1}^{(k+1)'}(x) P_{n-1}^{(k+1)}(x) u_j(x)
+ (1 - x^2)^{k+2} P_{n-1}^{(k+1)'}(x) \int_1^x \{ v_j(t) P_{n-1}^{(k+1)}(t) - (1 + t) u_j(t) P_{n-1}^{(k+1)'}(t) \} dt,
\]

(27)

where \(u_j(x)\) and \(v_j(x)\) are uniquely determined polynomials of degree at most \(k - j + 3\).

Lemma 3.4.

The fundamental polynomial which correspond to the boundary condition \(D_j(x)\), for \(j = 0, 1, \ldots, k + 2\) satisfying interpolatory conditions (24) are given by:

\[
D_j(x) = (1 - x)^{k+2} (1 + x)^2 P_{n-1}^{(k+1)'}(x) P_{n-1}^{(k+1)}(x) \tilde{u}_j(x)
+ (1 - x^2)^{k+2} P_{n-1}^{(k+1)'}(x) \int_1^x \{ \tilde{v}_j(t) P_{n-1}^{(k+1)}(t) - \tilde{u}_j(t) P_{n-1}^{(k+1)'}(t) \} dt,
\]

(28)

where \(\tilde{u}_j(x)\) and \(\tilde{v}_j(x)\) are uniquely determined polynomials of degree at most \(k - j + 4\) and \(k - j + 3\) respectively, and

\[
D_{k+2}(x) = \frac{(1 - x^2)^{k+2} P_{n-1}^{(k+1)'}(x)}{(k + 2)! 2^{k+2} P_{n-1}^{(k+1)'}(-1)}, \text{ for } j = k + 2.
\]

(29)

Theorem 3.5.

For \(k \geq 0\) and \(n \geq 2\) fixed integers, if \(\{y_i\}_{i=1}^n\), \(\{y_i^1\}_{i=1}^{n-1}\), \(\{y_i^{(l)}\}_{i=1}^{k+1}\) and \(\{y_i^{(l)}\}_{l=0}^{k+2}\) are arbitrary real numbers. Then, on the nodal points (1) there exist a unique polynomial \(R_m(x)\) of degree at most \(2n+2k+3\) satisfying equations (2), (3), (4) and (5). The polynomial \(R_m(x)\) can be written in the form (20).
Proof:
By Lemma 3.1, 3.2, 3.3, and 3.4 the polynomial $R_m(x)$ satisfies the conditions (2), (3), (4), (5). Hence, the existence part of theorem is proved. For the uniqueness, find a polynomial $Q_m(x)$ of degree at most $2n+2k+3$ satisfying the conditions.

$$Q_m(x_i) = 0 \ (i = 1, 2, ..., n),$$

$$Q_m'(x_i) = 0 \ (i = 1, 2, ..., n - 1),$$

$$Q_m^{(l)}(1) = 0 \ (l = 0, 1, ..., k + 1),$$

$$Q_m^{(l)}(-1) = 0 \ (l = 0, 1, ..., k + 2),$$

Due to these equations it is clear that,

$$Q_m(x) = (1 - x^2)^{k+2}P_n^{(k+1)'}(x)r_n(x),$$

where $r_n(x)$ is a polynomial of degree at most $n+1$.

Hence,

$$Q_m'(x_i) = (1 - x_i^2)^{k+2}P_n^{(k+1)'}(x_i)r_n(x_i) = 0.$$

from which $r_n'(x_i) = 0$, for $i = 1, 2, ..., n - 1$, that is $r_n'(x) \equiv 0$. Hence,

$$r_n(x) \equiv c.$$

So

$$Q_m(x) = c(1 - x^2)^{k+2}P_n^{(k+1)'}(x),$$

$$\frac{d^{k+2}Q_m}{dx^{k+2}}(-1) = c(k + 2)!2^{k+2}P_n^{(k+1)'}(-1) = 0.$$

As $P_n^{(k+1)'}(-1) \neq 0$ it follows $c=0$. Hence, $Q_m(x) \equiv 0$, which proves the uniqueness.

4. Order of Convergence of the fundamental polynomials.

Theorem 4.1.
If $k > 0$, $n \geq 2$, for the first derivative of the first kind fundamental polynomials on $[-1,1]$ holds

$$\sum_{j=1}^{n} (1 - x_j^2)|A_j'(x)| = O(n^{2k+6}). \quad (30)$$

Proof:
Differentiating (25), we get

$$\sum_{j=1}^{n} (1 - x_j^2)|A_j'(x)| = \zeta_1 + \zeta_2 + \zeta_3 + \zeta_4,$$
Similarly as above use the decomposition (13) in $l_1 (x)$, we have

$$
\zeta_1 \leq \sum_{j=1}^{n} \frac{2x(2k+2)(1 - x^2)^{k+1}(1 + x)^3 |P_n^{(k+1)}(x)|}{(1 - x_j^2)^{\frac{3n}{2}}(1 + x_j)^3 |P_n^{(k+1)}(x_j)|^3(n - 1)^2(n + 2k + 2)^2} \times \left\{ \gamma_1 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1 - x_j^2)^{\frac{2}{2}} |P_{\nu}^{(k+1)}(x_j)| \right\},
$$

(31)

where γ_1 is a constant which is independent of n, using (10), (11), and (18), it holds

$$
(1 - x_j^2)^{\frac{2}{2}} |P_{\nu}^{(k+1)}(x_j)| = O(\nu^{k+1}).
$$

Hence, apply the estimates by using (10), (11), (12), (18) and (32), we have

$$
\zeta_1 = O(n^{2k+6}).
$$

Utilise the decomposition (13) in $l_2 (x)$, we get

$$
\zeta_2 \leq \sum_{j=1}^{n} \frac{(1 - x^2)^{k+1} |P_n^{(k+1)}(x)|}{(1 - x_j^2)^{\frac{3n}{2}} |P_n^{(k+1)}(x_j)|^3(n - 1)^2(n + 2k + 2)^2} \times \left\{ \gamma_2 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1 - x_j^2)^{\frac{2}{2}} |P_{\nu}^{(k+1)}(x_j)| \right\} \times \left\{ \int_{-1}^{x} |P_{\nu}^{(k+1)}'(t)(1 + t)^3 dt| \right\},
$$

where γ_2 is a constant which is independent of n, using (10) and (11), it holds

$$
\left| \int_{-1}^{x} |P_{\nu}^{(k+1)}'(t)| dt \right| = O(\nu^{k+1}),
$$

(33)

using (10), (11), (12), (18), (32) and (33), we get

$$
\zeta_2 = O(n^{2k+6}).
$$

Again apply the decomposition in $l_3 (x)$, we obtain

$$
\zeta_3 \leq \sum_{j=1}^{n} \frac{3(1 - x^2)^{k+2} |P_n^{(k+1)}(x)|^2 |(1 + x)^2 |}{(1 - x_j^2)^{\frac{3n}{2}} |P_n^{(k+1)}(x_j)|^3(n - 1)^2(n + 2k + 2)^2} \times \left\{ \gamma_3 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1 - x_j^2)^{\frac{2}{2}} |P_{\nu}^{(k+1)}(x_j)| \right\},
$$

where γ_3 is a constant which is independent of n, using (10), (11), (12), (18) and (32), we have

$$
\zeta_3 = O(n^{2k+6}).
$$

Similarly as above use the decomposition in $l_4 (x)$, we obtain

$$
\zeta_4 \leq \sum_{j=1}^{n} \frac{(1 - x^2)^{k+2} |P_n^{(k+1)}(x)| ((1 + x)^3 |}{(1 - x_j^2)^{\frac{3n}{2}} (1 + x_j)^3 |P_n^{(k+1)}(x_j)|^3(n - 1)^2(n + 2k + 2)^2} \times \left\{ \gamma_4 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1 - x_j^2)^{\frac{2}{2}} |P_{\nu}^{(k+1)}(x_j)| \right\},
$$

where γ_4 is a constant which is independent of n, using (10) and (11), we get

$$
|P_{\nu}^{(k+1)''}(x)| = O(\nu^{k+3}),
$$

(34)
using (10), (11), (12), (18), (32) and (34), we obtain
\[\zeta_4 = O(n^{2k+6}), \]
which completes the proof.

Theorem 4.2.

If \(k > 0 \), \(n \geq 2 \), for the first derivative of the second kind fundamental polynomials on \([-1,1]\) holds
\[\sum_{j=1}^{n-1} |B_j'(x)| = O(n^{k+\frac{3}{2}}). \]

Proof:

Differentiating (26), we get
\[\sum_{j=1}^{n-1} |B_j'(x)| = \eta_1 + \eta_2, \]
where use the decomposition (15) in \(\eta_1 \) for \(l_j^+(x) \). We get
\[\eta_1 \leq \sum_{j=1}^{n-1} \frac{(n-1)(n+2k+2)(1-x^2)^{k+1} |P_{n-1}^{(k+1)}(x)| \times \tilde{h}_{n-1}^{(k+1)}}{(1-x_j^*2)^{\frac{3k}{2}+\frac{15}{4}} (1-x_j^2)^2 |P_{n-1}^{(k+1)'}(x_j^*)|^3} \]
\[\times \left\{ \gamma_5 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1-x_j^2)^{\frac{3k}{2}+\frac{3}{4}} |P_{\nu}^{(k+1)}(x_j^*)| \times | \int_{-1}^{x} (1-t)^2 P_{\nu}^{(k+1)}(t) dt | \right\}. \]

By using (18) and (19), we have
\[\frac{1}{(1-x_j^*2)^{\frac{3k}{2}+\frac{15}{4}} |P_{n-1}^{(k+1)'}(x_j^*)|^3} = O((n-1)^{\frac{3}{2}}). \]

(36)

By (10), (11) for \(\nu \leq 1 \), we have
\[| \int_{-1}^{x} (1-t)^2 P_{\nu}^{(k+1)}(t) dt | = O(\nu^{k-1}). \]

(37)

Using (11), (12), (18), (36) and (37), we get
\[\eta_1 = O(n^{k+\frac{3}{2}}). \]

Again utilise the decomposition (15) in \(\eta_2 \) for \(l_j^+(x) \), we have
\[\eta_2 \leq \sum_{j=1}^{n-1} \frac{(n+2k+2)(1-x^2)^{k+2}(1-x)^2 |P_{n-2}^{(k+2)}(x)| \times \tilde{h}_{n-1}^{(k+1)}}{2(1-x_j^*2)^2(1-x_j^2)^{\frac{3k}{2}+\frac{15}{4}} |P_{n-1}^{(k+1)'}(x_j^*)|^3} \]
\[\times \left\{ \gamma_6 + \sum_{\nu=1}^{n-3} \frac{1}{h_{\nu}^{(k+1)}} (1-x_j^2)^{\frac{3k}{2}+\frac{3}{4}} |P_{\nu}^{(k+1)}(x_j^*)| |P_{\nu}^{(k+1)}(x)| \right\}. \]

Using (11), (12), (18) and (36), we obtain
\[\eta_2 = O(n^{k+\frac{3}{2}}), \]
where \(\gamma_5 \) and \(\gamma_6 \) are constants which are independent of \(n \), which completes the proof.
Theorem 4.3.
Let $k \geq 0$ be a fixed integer $m=2n+2k+3$ and let the knots $\{x_i\}_{i=1}^n$ and $\{x_i^*\}_{i=1}^{n-1}$ be the roots of the ultraspherical polynomials $P_{n-1}^{(k+1)'}(x)$ and $P_{n-1}^{(k+1)}(x)$ respectively. If $f \in C^r[-1,1]$ ($r \geq k+2$, $n \geq 2r - k + 2$) then the interpolational polynomial

$$R_m(x; f) = \sum_{i=1}^{n} f(x_i)A_i(x) + \sum_{i=1}^{n-1} f'(x_i^*)B_i(x) + \sum_{j=0}^{k+1} f^{(j)}(1)C_j(x) + \sum_{j=0}^{k+2} f^{(j)}(-1)D_j(x),$$

(38)

with the fundamental polynomials given in (25)-(29) satisfies, for $x \in [-1,1]$,

$$|f'(x) - R_m'(x; f)| = w(f^{(r)}; \frac{1}{n})O(n^{2k-r+6}).$$

Proof:
For $k=0$ we refer to (6), proved by Xie and Zhou (1988). Let $f \in C^r[-1,1]$, then by the theorem of Gopengauz for every $m \geq 4r + 5$ there exists a polynomial $p_m(x)$ of degree at most m such that for $j = 0, \ldots, r$

$$|f^{(j)}(x) - p_m^{(j)}(x)| \leq M_{r,j} \left(\frac{\sqrt{1-x^2}}{m} \right)^{r-j} w \left(f^{(r)}; \frac{\sqrt{1-x^2}}{m} \right),$$

(39)

where $w(f^{(r)}; \cdot)$ denotes the modulus of continuity of the function $f^{(r)}(x)$ and the constants $M_{r,j}$ depend only on r and j. Moreover,

$$f^{(j)}(\pm 1) = p_m^{(j)}(\pm 1) \quad (j = 0, \ldots, r).$$

By uniqueness of the interpolational polynomials $R_m(x; f)$ it is clear that $R_m(x; p_m) = p_m(x)$.

Hence, for $x \in [-1,1]$,

$$|f'(x) - R_m'(x; f)| \leq |f'(x) - p_m'(x)| + |R_m'(x; p_m) - R_m'(x; f)|$$

$$\leq |f'(x) - p_m'(x)| + \sum_{j=1}^{n} |f(x_j) - p_m(x_j)||A_j'(x)| + \sum_{j=1}^{n-1} |f'(x_j^*) - p_m'(x_j^*)||B_j'(x)|.$$

By using (38) and (39), applying the estimates (30) and (35), we obtain

$$|f'(x) - R_m'(x; f)| = O(1)n^{2k-r+6}w \left(f^{(r)}; \frac{1}{n} \right).$$

5. Conclusion
In this paper we have proved existence, uniqueness, explicit representation and order of convergence of the given interpolatory problem when the roots are given on the ultraspherical polynomial with boundary conditions on the closed interval -1 to 1. If function of f belongs to continuous $(k+2)^{th}$ class on the closed interval -1 to 1, $(k+2)^{th}$ derivative of the function of f belongs to Lip_{α}, where α is greater than $\frac{1}{2}$, let k be greater than equal to zero be a fixed integer m is equal to $2n+2k+3$ and n is greater than equal to $k+6$, then the function values of the polynomial of degree
and the first derivative values of the polynomial of degree \(m \) uniformly converge to function of \(f \) and it’s derivative of \(f \), respectively on closed interval \([-1, 1]\), as \(n \) tends to infinity.

Acknowledgement:

The authors are thankful to the anonymous referees and the Editor-in-Chief, Professor Aliakbar Montazer Haghighi, for their useful remark and suggestions for the betterment of the paper.

REFERENCES

