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Abstract

We illustrate recently proposed large time step method for hyperbolic conservation laws. In the
scalar case, it was proved earlier that if the approximate solutions converge boundedly, then they
converge to the entropy solution. The main goal of this paper is to consider the large time step
method for several systems of hyperbolic conservation laws. We compute approximate solutions
to Riemann problems for three genuinely nonlinear one-dimensional systems (the Keyfitz-Kranzer
system, the isentropic generalized Chaplygin gas dynamics equations, and the isentropic gas dy-
namics equations for polytropic gases with vanishing pressure). Besides approximating solutions
that contain shocks and rarefaction waves, the focus is on approximating solutions which contain
singular and delta shocks.
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1. Introduction and Summary

Conservation laws are time dependent partial differential equations that model a variety of prob-
lems in science and engineering. Some examples include gas dynamics used in aerospace engi-
neering, equations of nonlinear elasticity, traffic flow, multiphase flow applications in petroleum
engineering, blood flow, and models of large scale supply-chains in economics, among other.
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A system of n conservation laws in d-dimensions is given by

∂tu
i +∇ · Fi(u) = 0, i ∈ {1, . . . , n} ,

where (x, t) ∈ Rd × [0,∞), u = (u1, ..., un) is the unknown vector valued function, and Fi =

(F i1, ..., F
i
d), i ∈ {1, . . . , n}, is the known spatial flux density field defined on a domain of conserva-

tion states. Here

∇ · Fi(u) =

d∑
j=1

∂F ij (u)

∂xj
.

The system is supplemented by an initial condition u(x, 0) = u0(x), where u0 is a bounded and
measurable function of x ∈ Rd. The above system is hyperbolic if all linear combinations of the
matrices

[
∂F i

k

∂uj

]
n×n

, k ∈ {1, . . . , d}, have real eigenvalues λ1(u) ≤ λ2(u) ≤ . . . ≤ λn(u) and full set
of right eigenvectors r1(u), r2(u), . . ., rn(u). If all the eigenvalues are real and distinct, the system is
strictly hyperbolic. The problems in science and engineering often deal with the nonlinear function
F leading to nonlinear systems. One important property of nonlinear hyperbolic conservation laws
is the possibility of discontinuous solutions and the above system has to be interpreted in a dis-
tributional sense introducing weak solutions. Since there might be infinitely many weak solutions
for a given initial condition and some of them might be non-physical, the admissibility conditions
(such as entropy conditions) are imposed.

In this paper we consider one-dimensional systems (d = 1) with Riemann initial data

u(x, 0) =

{
ul, x < 0,

ur, x > 0.

We recall that for a hyperbolic system of conservation laws, the i-characteristic family is genuinely
nonlinear if

∇λi(u)ri(u) 6= 0,

and linearly degenerate if

∇λi(u)ri(u) = 0,

for all states u. If each characteristic family is either genuinely nonlinear or linearly degenerate, the
solution of the above system with Riemann initial data, where ul is sufficiently close to ur, has a
simple structure consisting of the superposition of n elementary waves (shocks, rarefaction waves,
or contact discontinuities). For theoretical results, we refer to Bressan (2009), Dafermos (2016),
Holden et al. (2002), Kružkov (1970), Lax (1973), Smoller (1994). However, if ul is not close to
ur, there are examples of systems of hyperbolic conservation laws for which the standard weak
entropy solutions do not exist, but weaker, measure-valued solutions (containing singular and δ-
shocks) exist. For theoretical studies of singular and δ-shocks, we refer to Keyfitz (1999), Keyfitz et
al. (1989, 1995), Sever (2007), Danilov et al. (2005), Shelkovich (2004, 2008), Nedeljkov (2004),
Nedeljkov et al. (2008).

The focus of this paper is on the numerical study of one-dimensional systems of hyperbolic con-
servation laws in two equations (n = 2 and d = 1) using the recently developed large time step
method in Jegdić (2014), Jegdić et al. (2018). We present the overview of this method in Section
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2. The significance of the method is that it can be used when we have highly irregular grids where
the usual finite volume methods might fail. In Section 3 we consider the Keyfitz-Kranzer system
Keyfitz (1999), Keyfitz et al. (1989, 1995), the isentropic generalized Chaplygin gas dynamics
equations studied in Wang (2013), and the isentropic gas dynamics equations for polytropic gases
with vanishing pressure studied in Chen et al. (2003). We choose a variety of Riemann initial data
that illustrate the effectiveness of the large time step method and, in particular, we confirm the
mathematical analysis of solutions containing singular and δ-shocks.

2. Large Time Step Finite Volume Numerical Method for Hyperbolic
Conservation Laws

In this section we give a brief overview of the large time step method developed in Jegdić (2014),
Jegdić et al. (2018).

First, let us recall the derivation of a finite volume method. Let us assume that Rd has a partition
consisting of cells ∆ = {Ωi | i ∈ I}, and by |Ωi| we denote the size of a cell i. The approximate
solution obtained via the finite volume method is a piecewise constant function at every time level
and we denote it by

un(x) =
∑
I

uni χΩi
(x),

where χ represents the characteristic function and uni represents the cell average of cell i at the time
step n. Clearly, we have u0(x) =

∑
I u

0
iχΩi

(x), where u0
i is calculated using the initial data by

u0
i =

1

Ωi

∫
Ωi

u0(x) dx.

Besides the space, the time is also discretized, meaning that if we are looking for the solution at
time T , then we will be required to compute a series of time steps of size ∆t until we reach T . The
time steps are defined by

∆tM ≤ min
i

|Ωi|
|∂Ωi|

CFL,

where the CFL constant is given by the Courant – Friedrichs – Lewy condition, |∂Ωi| is the size of
Ωi’s boundary, andM is a constant proportional to the fastest wave speed. In the scalar case (n = 1),
we take M = maxu |F ′(u)|. Clearly, the time step depends directly on the size of the smallest cell,
meaning that, if we have at least one very small cell, our time step will be very small. Besides the
problems with the small time step, having the small cells next to the large cells could cause the
finite volume method not to converge to a weak solution, i.e., the Lax – Wendroff Theorem (Lax
et al. (1960)) would not hold. For the finite volume method we have

0 = |Ωi|
(
un+1
i − uni

)
+ ∆t

∑
k

∫
Si,k

hnk·F ds,

where ∆t = tn+1 − tn represents the time step from time tn to time tn+1, Si,k is the edge between
cells i and k, nk is the corresponding outward normal and hnk·F is the numerical flux function.

In the one-dimensional scalar case, the finite volume method reads

un+1
i = uni −

∆t

∆xi
(hi+1 − hi) ,
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where hi+1 denotes the numerical flux between the cells i and i+ 1, which usually depends only on
ui and ui+1, and ∆xi is the size of cell i. Some of the most well known numerical fluxes are Go-
dunov’s, Roe’s, Engquist-Osher’s, and Lax-Friedrichs’s fluxes (Engquist et al. (1981), Godlewski
et al. (1991), Godunov (1959), Holden et al. (2002), LeVeque (1990), Roe (1981), Sanders (2007)).
For us, the most interesting fluxes are so called splitting fluxes, i.e., the fluxes where we can sepa-
rate monotonically increasing and monotonically decreasing part,

hi+1 (ui, ui+1) = h+ (ui) + h− (ui+1) .

Here, h+ denotes the monotonically increasing part and h− denotes the monotonically decreasing
part of the chosen numerical flux. Engquist-Osher’s and Lax-Friedrichs’s fluxes are examples of
splitting fluxes. Further, instead of having a flux depending only on states ui and ui+1, we suggest
that the numerical flux should depend on more states. If L is such that L > mini ∆xi, and if we
include all cells which are contained in the interval (xi − L, xi + L), then

∆tmax
u

∣∣F ′(u)
∣∣ ≤ L · CFL

and, therefore, we can make larger time steps which allows faster marching through time. What is
important to emphasize is that L can be chosen independently of the grid.

For the large time step method, in the scalar case, we proved in Jegdić (2014), Jegdić et al. (2018)
that if we have bounded convergence of approximate solutions, then the approximate solutions
converge to the weak solution which is also the entropy solution. It is important to note that we
have convergence to a weak solution regardless of the cell sizes in the grid. The small cells can
be next to large cells and the Lax – Wendroff Theorem still holds, while for regular finite volume
methods this may not be true.

3. Numerical Examples

In this section we consider the large time step method for the Keyfitz-Kranzer system, the isentropic
generalized Chaplygin gas dynamics equations, and the isentropic gas dynamics equations for
polytropic gases with vanishing pressure. We compute approximate solutions for a variety of initial
conditions illustrating shocks, rarefaction waves, singular shocks, and δ-shocks, using the large
time step method introduced in Section 2.

3.1. The Keyfitz-Kranzer System

We consider a system, studied in Keyfitz (1999), Keyfitz et al. (1989, 1995), given by

∂tu+ ∂x(u2 − v) = 0,

∂tv + ∂x

(
u3

3 − u
)

= 0.

The system is strictly hyperbolic with both characteristic families genuinely nonlinear and the
solution of the Riemann problem is described in Keyfitz et al. (1995).

We fix the left state (ul, vl) = (1.5, 0) and we use the phase space (Figure 1 in Keyfitz et al. (1995))
to choose the following variety of examples for the right state (ur, vr).



1114 I. Jegdić

Figure 1. The phase space for (ul, vl) = (1.5, 0)

For convenience, the phase space for (ul, vl) = (1.5, 0) is plotted in Figure 1. We recall from
Keyfitz et al. (1995) that if (ur, v2) is inside the curvilinear quadrant Q, bounded by the dashed
curve, then the classical solution exists consisting of shock/rarefaction waves (Example 3.1). If
(ur, vr) is outside of Q, the solution of the Riemann problem includes a singular shock (Examples
3.2 – 3.5).

In the following examples we solve the Riemann problems approximately on the interval [−1, 1]

using 500 cells. To illustrate the large time step method, in each of the intervals [−0.5, 0] and [0, 0.5]

we randomly select 20 cells and replace them by the smaller cells of the size ∆x
20 and ∆x

30 . The
CFL constant is taken to be 0.8 relative to the largest cell size and L is taken to be 2.5∆x, where
∆x = 2

500 .

Example 3.1.

We take (ur, vr) = (1, 1) which results in a solution consisting of a 1-rarefaction wave followed by
a 2-shock wave. The solutions u and v are plotted in Figure 2.
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Figure 2. Solutions u and v at times 0.1, 0.2 and 0.3

Example 3.2.

Assume (ur, vr) = (−1.895644, 1.34347), as studied in Jegdić (2005), Sanders et al. (2003), which
results in a singular shock. In this case (ur, vr) is on the boundary of the region Q. The solutions
are plotted in Figure 3.
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Figure 3. Solutions u and v at times 0.1, 0.2 and 0.3

Example 3.3.

Let (ur, vr) = (−3, 0) leading to a singular shock. The solutions are plotted in Figure 4.
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Figure 4. Solutions u and v at times 0.1, 0.2 and 0.3

Example 3.4.

Assume (ur, vr) = (−1, 3) which results in a 1-rarefaction wave followed by a singular shock. The
solutions are plotted in Figure 5.
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Figure 5. Solutions u and v at times 0.1, 0.2 and 0.3

Example 3.5.

Assume (ur, vr) = (−1,−4) which results in a singular shock followed by a 2-rarefaction wave.
The solutions are plotted in Figure 6.
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Figure 6. Solutions u and v at times 0.1, 0.2 and 0.3

3.2. The Isentropic Generalized Chaplygin Gas Dynamics Equations

The one-dimensional Euler equations modeling isentropic compressible gas dynamics are given by

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,
(1)

where ρ, u, and p represent the mass density, the velocity and the pressure. We consider the gener-
alized Chaplygin equation of state given by

p(ρ) = − s

ρα
, s > 0, α ∈ (0, 1]. (2)

The mathematical structure of the solution of the Riemann problem was studied in Wang (2013).
The system is strictly hyperbolic with both characteristic families genuinely nonlinear.

We fix the left state (ρl, ul) = (3, 4) and we use the phase space (Figure 2.1 in Wang (2013)) to
choose the right state (ρr, ur).

Figure 7. The phase space for (ρl, ul) = (3, 4)

For convenience, the phase space for (ρl, ul) = (3, 4) is plotted in Figure 7, with α = 0.5 and s = 5.
We recall from Wang (2013) that if (ρr, ur) is above the dashed curve, a classical solution to the
Riemann problem for (1) – (2) exists (Examples 3.6 – 3.9). If (ρr, ur) is below the dashed curve,
the solution contains a singular shock (Example 3.10).

In the following examples we solve the Riemann problem approximately on the interval [−1, 1]

with 4000 cells. To illustrate the large time step finite volume method, in each of the intervals
[−0.5, 0] and [0, 0.5] we randomly select 20 cells which are replaced by the smaller cells of the size
∆x
20 and ∆x

30 . The CFL constant is taken to be 0.8 relative to the largest cell size and L is taken to be
∆x, where ∆x = 2

4000 .



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 1117

Example 3.6.

Assume (ρr, ur) = (2, 6), for which the solution to the Riemann problem consists of two rarefaction
waves. The approximate solutions ρ and u are plotted in Figure 8.
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Figure 8. Solutions ρ and u at times 0.02, 0.05 and 0.1

Example 3.7.

Assume (ρr, ur) = (6, 4) resulting in a 1-shock and a 2-rarefaction wave. The solutions ρ and u are
plotted in Figure 9.
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Figure 9. Solutions ρ and u at times 0.02, 0.05 and 0.1

Example 3.8.

Assume (ρr, ur) = (1, 2) leading to a solution consisting of two shocks. The solutions ρ and u are
plotted in Figure 10.
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Figure 10. Solutions ρ and u at times 0.02, 0.05 and 0.1
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Example 3.9.

Let (ρr, ur) = (1, 4) resulting in a 1-rarefaction wave and a 2-shock. The solutions ρ and u are
plotted in Figure 11.
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Figure 11. Solutions ρ and u at times 0.02, 0.05 and 0.1

Example 3.10.

Assume (ρr, ur) = (1,−4), as considered in Wang (2013) using a semidiscrete central-upwind
scheme, leading to a δ-shock. The solutions ρ and u are plotted in Figure 12.
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Figure 12. Solutions ρ and u at times 0.02, 0.05 and 0.1

3.3. The Isentropic Gas Dynamics Equations for Polytropic Gases with Vanishing
Pressure

We consider the one-dimensional Euler equations for isentropic gas dynamics (1) with the equation
of state for perfect polytropic gases

p(ρ) = ε
ργ

γ
, ε > 0, γ > 1. (3)

The system is strictly hyperbolic and genuinely nonlinear. Chen and Liu Chen et al. (2003) con-
sidered the case ε → 0 and showed, in particular, that any two-shock Riemann solution tends to
δ-shock to the Euler equations for pressureless fluids (equations (1) with p = 0) and that the inter-
mediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock.

We consider the numerical examples from Chen et al. (2003) where γ = 1.4, (ρl, ul) = (1, 1.5) and
(ρr, ur) = (0.2, 0) are fixed, while the parameter ε takes values 1.4, 0.14, 0.07, 0.007, and 0.0014.
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Figure 13. The phase space for (ρl, ul) = (1, 1.5) and for specific values of ε

For convenience, we plot the phase space for (ρl, ul) = (1, 1.5) in Figure 13, for different values
of ε and we note that as ε → 0, the regions between the curves R1 and S2 and between S1 and R2

vanish. In Figures 14–18, we plot approximate solutions ρ and u at times 0.02, 0.05 and 0.2, for the
indicated values of ε, using the large time step method.

In the following examples we solve the Riemann problem approximately on the interval [−1, 1]

with 4000 cells. In each of the intervals [−0.5, 0] and [0, 0.5] we randomly select 20 cells and replace
them by the smaller cells of the size ∆x

20 and ∆x
30 . The CFL constant is taken to be 0.8 relative to the

largest cell size and L is taken to be ∆x, where ∆x = 2
4000 .
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Figure 14. Solutions ρ and u at times 0.02, 0.05 and 0.2 when ε = 1.4

4. Conclusion

We use the large time step finite volume numerical method recently proposed in Jegdić (2014),
Jegdić et al. (2018). The convergence of the method was studied in Jegdić (2014) and it was proved,
in the scalar case (n = 1), that if we have the bounded convergence of the approximate solutions,
then the approximate solutions converge to the entropy solution. In this paper, we illustrate the
large time step method in computing approximate solutions to several systems (n = 2) of one-
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Figure 15. Solutions ρ and u at times 0.02, 0.05 and 0.2 when ε = 0.14
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Figure 16. Solutions ρ and u at times 0.02, 0.05 and 0.2 when ε = 0.07
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Figure 17. Solutions ρ and u at times 0.02, 0.05 and 0.2 when ε = 0.007

dimensional hyperbolic conservation laws. Besides computing solutions which contain shocks and
rarefaction waves, we also consider examples for which solutions contain singular and δ-shocks.
The numerical results in this paper confirm the mathematical analysis of the structure of the solu-
tions and/or numerical results obtained in Chen et al. (2003), Keyfitz (1999), Keyfitz et al. (1989,
1995), Wang (2013) and imply the effectiveness of the large time step method.
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Figure 18. Solutions ρ and u at times 0.02, 0.05 and 0.2 when ε = 0.0014
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