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Abstract

This study deals with some new properties for the Generalized Sylvester polynomials in several
variables. Some properties of these polynomials were given. We also derive an application giv-
ing certain families of bilateral generating functions for the Generalized Sylvester polynomials in
several variables. At the end, we discuss some special cases.
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1. Introduction

The Sylvester polynomials φn(x) are defined by (see, [Srivastava and Manocha (1984)])
∞∑
n=0

φn(x)tn = (1− t)−xext, (1)

|t| < 1.

In Srivastava and Manocha (1984), from (1), we have

φn(x) =
xn

n!
2F0

[
−n, x;−;−x−1

]
,
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where 2F0 is Gauss’s hypergeometric series. The generalized hypergeometric series pFq defined
and by

pFq

[
α1, ..., αp;

β1, ..., βq;
z

]
=

∞∑
n=0

(α1)n ... (αp)n
(β1)n ... (βq)n

zn

n!

= pFq (α1, ..., αp;β1, ..., βq; z) .

Here, (λ)ν denotes the Pochhammer symbol defined by

(λ)ν =

{
1, if ν = 0; λ ∈ C\{0}
λ(λ+ 1)...(λ+ n− 1), if ν = n ∈ N; λ ∈ C.

In Choi et al. (2017), introduced the generalized Sylvester polynomials of three variables denoted
by fn(x, y, z; a, b, c, d, e, h) as follows:

fn(x, y, z; a, b, c, d, e, h) = (dx)n(ey)n(hz)n

n! F (3)

−n :: −;−;− : ax; by; cz;

− 1
dx ,−

1
ey ,−

1
hz

− :: −;−;− : −; −; −;

 , (2)

where F (3)[x, y, z] is the general triple hypergeometric series in Srivastava and Karlsson (1985).
From (2), we have

fn(x, y, z; a, b, c, d, e, h) =
(dx)n(ey)n(hz)n

n!

×
∞∑

r,s,k=0

(−n)r+s+k (ax)r (by)s (cz)k
r!s!k!

(
− 1

dx

)r (
− 1

ey

)s(
− 1

hz

)k

=

n∑
r=0

n−r∑
s=0

n−r−s∑
k=0

(ax)r (by)s (cz)k (dx)n (ey)n (hz)n

r!s!k!(n− r − s− k)! (dx)r (ey)s (hz)k
.

The generalized Sylvester polynomials of three variables fn(x, y, z; a, b, c, d, e, h) have the following
generating function in Choi et al. (2017):

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)tn (3)

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz.

In Choi et al. (2017), we have the following generating function
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∞∑
n=0

(
n+ k

n

)
fn+k(x, y, z; a, b, c, d, e, h)tn (4)

= edehxyzt(1− ehyzt)−ax−k(1− dhxzt)−by−k(1− dexyt)−cz−k

×fk(x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt)).

In this study, various families of multilinear and multilateral generating functions, miscellaneous
properties and also some special cases for these polynomials are obtained. In addition, we derive
a theorem giving certain families of bilateral generating functions for the generalized Sylvester
polynomials of three variables and the Appell functions.

2. Summation Formula

Lemma 2.1.

The following addition expression holds for the generalized Sylvester polynomials of three
variables:

fn(x1 + x2, y, z; a, b, c, d, e, h) (5)

=

n∑
m=0

1

(1− dx1hzt)m(1− dx1eyt)m
fn−m(x1, y, z; a, b, c, d, e, h)

×fm(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h).

Proof:

Replacing x by x1 + x2 in (3), we obtain
∞∑
n=0

fn(x1 + x2,y, z; a, b, c, d, e, h)tn

= e(x1+x2)deyhzt(1− eyhzt)−a(x1+x2)

×(1− d(x1 + x2)hzt)−by(1− d(x1 + x2)eyt)−cz

= (1− eyhzt)−ax1edx1eyhzt(1− eyhzt)−ax2edx2eyhzt

×(1− dx1hzt− dx2hzt)
−by(1− dx1eyt− dx2eyt)

−cz

= edx1eyhzt(1− eyhzt)−ax1(1− dx1hzt)
−by(1− dx1eyt)

−cz

×edx2eyhzt(1− eyhzt)−ax2(1− dx2hzt

1− dx1hzt
)−by(1− dx2eyt

1− dx1eyt
)−cz
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=

∞∑
n=0

fn(x1, y, z; a, b, c, d, e, h)tn
(
e
dx2eyhzt

(1−dx1hzt)(1−dx1eyt)

(1−dx1hzt)(1−dx1eyt)

)

×
(

1− eyhzt(1− dx1hzt)(1− dx1eyt)

(1− dx1hzt)(1− dx1eyt)

)−ax2

×
(

1− dx2hzt
(1− dx1eyt)

(1− dx1hzt)(1− dx1eyt)

)−by

×
(

1− dx2eyt
(1− dx1hzt)

(1− dx1eyt)(1− dx1hzt)

)−cz

=

∞∑
n=0

fn(x1, y, z; a, b, c, d, e, h)tn

×
∞∑
m=0

fm(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)
tm

(1− dx1hzt)m(1− dx1eyt)m

=

∞∑
n=0

∞∑
m=0

fn(x1, y, z; a, b, c, d, e, h)fm(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)

× tn+m

(1− dx1hzt)m(1− dx1eyt)m

=

∞∑
n=0

n∑
m=0

fn−m(x1, y, z; a, b, c, d, e, h)fm(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)

× tn

(1− dx1hzt)m(1− dx1eyt)m
.

Comparing of the coefficients of tn, lemma is proved. �

3. Bilinear and Bilateral Generating Functions

In this section, with the help of the similar method as considered in Ozmen et al. (2018) and Ozmen
(2015), we derive several families of bilinear and bilateral generating functions for the generalized
Sylvester polynomials of three variables given by (3).

Theorem 3.1.

For a non-vanishing function Ωµ(y1, ..., yr ) of r complex variables y1, ..., yr (r ∈ N) and of complex
order µ, ψ, let

Λµ,ψ(y1, ..., yr; ζ) =

∞∑
k=0

akΩµ+ψk(y1, ..., yr)ζ
k (ak 6= 0),
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and

Θµ,ψ
n,p (x; c; y1, ..., yr; ξ)

=

[n/p]∑
k=0

akfn−pk(x, y, z; a, b, c, d, e, h)Ωµ+ψk(y1, ..., yr)ξ
k. (6)

Then, for p ∈ N, we have
∞∑
n=0

Θµ,ψ
n,p

(
x, y, z; a, b, c, d, e, h; y1, ..., yr;

η

tp

)
tn (7)

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×Λµ,ψ(y1, ..., yr; η).

Proof:

For convenience, let S denote the first member of the assertion (7) of Theorem 3.1. Then, plugging
the polynomials

Θµ,ψ
n,p

(
x, y, z; a, b, c, d, e, h; y1, ..., yr;

η

tp

)
,

which comes from (6) into the left-hand side of (7), we obtain

S =

∞∑
n=0

[n/p]∑
k=0

akfn−pk(x, y, z; a, b, c, d, e, h)Ωµ+ψk(y1, ..., yr)η
ktn−pk. (8)

Upon changing the order of summation in (8), if we replace n by n+ pk, we can write

S =

∞∑
n=0

∞∑
k=0

ak fn(x, y, z; a, b, c, d, e, h)Ωµ+ψk(y1, ..., yr)η
ktn

=

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)tn
∞∑
k=0

akΩµ+ψk(y1, ..., yr)η
k

= edexyzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×Λµ,ψ(y1, ..., yr; η),

the proof is completed. �
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Theorem 3.2.

Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables
y1, ..., yr (r ∈ N) and of complex order µ, ψ, let

Λn,pµ,ψ(x1 + x2; c; y1, ..., yr; t)

=

[n/p]∑
k=0

akfn−pk(x1 + x2, y, z; a, b, c, d, e, h)

×Ωµ+ψk(y1, ..., yr)t
k,

where ak 6= 0 , n, p ∈ N. Then, we have

n∑
k=0

[k/p]∑
l=0

al
1

[(1− dx1hzt)(1− dx1eyt)]
k−pl fn−k(x1, y, z; a, b, c, d, e, h)

×fk−pl(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h) (9)

×Ωµ+ψl(y1, ..., yr)t
l

= Λn,pµ,ψ(x1 + x2, y, z; a, b, c, d, e, h; y1, ..., yr; t),

provided that each member of (9) exists.

Proof:

For convenince, let T denote the first member of the assertion (9) of Theorem 3.2. Then, upon
subsituting for the polynomials fn−pk(x1 +x2, y, z; a, b, c, d, e, h) from the (5) into the left-hand side
of (9), we obtain

T =

[n/p]∑
l=0

n−pl∑
k=0

al
1

[(1− dx1hzt)(1− dx1eyt)]
k
fn−k−pl(x1, y, z; a, b, c, d, e, h)

×fk(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)Ωµ+ψl(y1, ..., yr)t
l

=

[n/p]∑
l=0

al

n−pl∑
k=0

1
[(1−dx1hzt)(1−dx1eyt)]

k fn−k−pl(x1, y, z; a, b, c, d, e, h)

×fk(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)


×Ωµ+ψl(y1, ..., yr)t

l

=

[n/p]∑
l=0

alfn−pl(x1 + x2, y, z; a, b, c, d, e, h)Ωµ+ψl(y1, ..., yr)t
l

= Λn,pµ,ψ(x1 + x2, y, z; a, b, c, d, e, h; y1, ..., yr; t). �



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 1099

Theorem 3.3.

Corresponding to an identically non-vanishing function Ωµ(y1, ..., yr ) of r complex variables
y1, ..., yr (r ∈ N) and of complex order µ, let

Λµ,p,q [x, y, z; a, b, c, d, e, h; y1, ..., yr; t]

=

∞∑
k=0

akfm+qk(x, y, z; a, b, c, d, e, h)Ωµ+pk(y1, ..., yr)t
k,

where ak 6= 0 and

θn,p,q(y1, ..., yr; z) =

[n/q]∑
k=0

(
m+ n

n− qk

)
akΩµ+pk(y1, ..., yr)z

k.

Then, for p, q ∈ N; we have
∞∑
n=0

fm+n(x, y, z; a, b, c, d, e, h)θn,p,q(y1, ..., yr; z)t
n (10)

= edehxyt(1− ehyzt)−ax(1− dhxzt)−by(1− dexyt)−cz

×Λµ,p,q

(
x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyz)

; y1, ..., yr; z(
t

(1−ehyzt)(1−dhxzt)(1−dexyt))q

)
,

provided that each member of (10) exists.

Proof:

For convenience, let T denote the first member of the assertion (10) of Theorem 3.3. Then, we get

T =

∞∑
n=0

fm+n(x, y, z; a, b, c, d, e, h)

×
[n/q]∑
k=0

(
m+ n

n− qk

)
akΩµ+pk(y1, ..., yr)z

ktn.

Replacing n by n+ qk and then using (4), we may write that

T =

∞∑
n=0

∞∑
k=0

(
m+ n+ qk

n

)
fm+n+qk(x, y, z; a, b, c, d, e, h)Ωµ+pk(y1, ..., yr)z

ktn+qk

=

∞∑
k=0

( ∞∑
n=0

(
m+ n+ qk

n

)
fm+n+qk(x, y, z; a, b, c, d, e, h)tn

)
Ωµ+pk(y1, ..., yr)(zt

q)k

=

∞∑
k=0

ake
dehxyzt(1− ehyzt)−ax−m−qk(1− dhxzt)−by−m−qk(1− dexyt)−cz−m−qk

×fm+qk (x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt)) Ωµ+pk(y1, ..., yr)(zt
q)k

= edehxyzt(1− ehyzt)−ax−m(1− dhxzt)−by−m(1− dexyt)−cz−m
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×
∞∑
k=0

akfm+qk (x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt))

×Ωµ+pk(y1, ..., yr)(
ztq

(1− ehyzt)q(1− dhxzt)q(1− dexyt)q
)k

= edehxyzt(1− ehyzt)−ax−m(1− dhxzt)−by−m(1− dexyt)−cz−m

×Λµ,p,q

(
x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt);

y1, ..., yr; z(
t

(1−ehyzt)(1−dhxzt)(1−dexyt))q

)
.

The proof is completed. �

4. Special Cases

When the multivariable function Ωµ+ψk(y1, ..., yr), k ∈ N0, r ∈ N, is expressed in terms of simpler
functions of one and more variables, then we can give further applications of the above theorems.
We first set

Ωµ+ψk(y1, ..., yr ) = h
(α1,...,αr)
µ+ψk (y1, ..., yr),

in Theorem 3.1, where the multivariable extension of the Lagrange-Hermite polynomials
h

(α1,α2,...,αr)
µ+ψk (x1, ..., xr) [Altin et al. (2006)], generated by

r∏
j=1

{
(1− xjtj)−αj

}
=
∞∑
n=0

h
(α1,...,αr)
n (x1, ..., xr) t

n,

α ∈ C , |t| < min
{
|x1|−1 , |x2|−1/2 , ..., |xr|−1/r

}
.

(11)

We are thus led to the following result which provides a class of bilateral generating functions for
the multivariable extension of the Lagrange-Hermite polynomials polynomials h(α1,...,αr)

µ+ψk (y1, ..., yr)

and the generalized Sylvester polynomials of three variables.

Corollary 4.1.

If

Λµ,ψ(y1, ..., yr; ζ)

=

∞∑
k=0

akh
(α1,...,αr)
µ+ψk (y1, ..., yr)ζ

k, (ak 6= 0 , µ, ψ ∈ C) ,

then we have

∞∑
n=0

[n/p]∑
k=0

akfn−pk(x, y, z; a, b, c, d, e, h)h
(α1,...,αr)
µ+ψk (y1, ..., yr)

ηk

tpk
tn (12)
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= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−czΛµ,ψ(y1, ..., yr; η).

Remark 4.2.

Using the generating relation (12) for the multivariable polynomials h(α1,...,αr)
µ+ψk (x1, ..., xr) and

getting ak = 1, µ = 0, ψ = 1, we find that
∞∑
n=0

[n/p]∑
k=0

fn−pk(x, y, z; a, b, c, d, e, h)h
(α1,...,αr)
k (y1, ..., yr)η

ktn−pk

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by

×(1− dxeyt)−cz
r∏
j=1

{
(1− yjηj)−αj

}
,

|ζ| < min
{
|y1|−1 , |y2|−1/2 , ..., |yr|−1/r

}
, |η| < 1.

If we set r = 3 and

Ωµ+ψk(y1, y2, y3) = fµ+ψk(x3, y, z; a, b, c, d, e, h),

in Theorem 3.2, we have the following bilinear generating functions for the generalized Sylvester
polynomials of three variables.

Corollary 4.3.

If

Λn,pµ,ψ(x1 + x2, y, z; a, b, c, d, e, h;x3, y, z; a, b, c, d, e, h; t)

=

[n/p]∑
k=0

akfn−pk(x1 + x2, y, z; a, b, c, d, e, h)

×fµ+ψk(x3, y, z; a, b, c, d, e, h)tk, (ak 6= 0 , µ, ψ ∈ C) ,

then we get

n∑
k=0

[k/p]∑
l=0

al
1

[(1− dx1hzt)(1− dx1eyt)]
k−pl fn−k(x1, y, z; a, b, c, d, e, h) (13)

×fk−pl(x2, y(1− dx1hzt), z(1− dx1eyt); a, b, c, d, e, h)fµ+ψl(x3, y, z; a, b, c, d, e, h)tl

= Λn,pµ,ψ(x1 + x2, y, z; a, b, c, d, e, h;x3, y, z; a, b, c, d, e, h; t).
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If we set

s = 1 and Ωµ+ψk(y1) = P
(α,β)
µ+ψk(ω),

in Theorem 3.3, where the classical Jacobi polynomials P (α,β)
n (y) is generated by [Erdélyi et al.

(1955)],

∞∑
n=0

P (α,β)
n (x) tn =

2α+β

ρ
(1− t+ ρ)−α(1 + t+ ρ)−β,{

ρ = (1− 2xt+ t2)1/2
}
.

We get a family of the bilateral generating functions for the classical Jacobi polynomials and the
generalized Sylvester polynomials of three variables as follows:

Corollary 4.4.

If

Λµ,p,q [x, y, z; a, b, c, d, e, h;ω; t]

=

∞∑
n=0

anfm+qn(x, y, z; a, b, c, d, e, h)P
(α,β)
µ+pn (ω) tk,

(an 6= 0, m ∈ N0, k 6= 0, µ, ψ ∈ C) ,

and

θn,p,q(ω; z) :=

[n/q]∑
k=0

(
m+ n

n− qk

)
akP

(α,β)
µ+pn (ω) zk,

where n, p ∈ N, then we get that

∞∑
n=0

fm+n(x, y, z; a, b, c, d, e, h)θn,p,q(ω; z)tn (14)

= edehxyzt(1− ehyzt)−ax−m(1− dhxzt)−by−m(1− dexyt)−cz−m

×Λµ,p,q

(
x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt)

;ω; z( t
(1−ehyzt)(1−dhxzt)(1−dexyt))q

)
.
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Remark 4.5.

Furthermore, for every suitable choice of the coefficients ak (k ∈ N0), if the multivariable func-
tions Ωµ+ψk(y1, ..., yr), r ∈ N, are expressed as an appropriate product of several simpler functions,
the assertions of Theorem 3.1, Theorem 3.2, Theorem 3.3 can be applied in order to derive vari-
ous families of multilinear and multilateral generating functions for the family of the generalized
Sylvester polynomials of three variables given explicitly by (3).

5. Miscellaneous Properties

In this section, we give some properties for the generalized Sylvester polynomials of three vari-
ables fn(x, y, z; a, b, c, d, e, h) given by (3).

Theorem 5.1.

The generalized Sylvester polynomials of three variables fn(x, y, z; a, b, c, d, e, h) have the following
integral representation:

fn(x, y, z; a, b, c, d, e, h)

=
1

n!Γ(ax)Γ(by)Γ(cz)

n∑
m=0

(
n

m

)

×
∞∫

0

∞∫
0

∞∫
0

e−(u1+u2+u3)uax−1
1 uby−1

2 ucz−1
3 (dehxyz)n−m

×(ehyzu1 + dhxzu2 + dexyu3)mdu1du2du3.

Proof:

If we use the identity

a−v =
1

Γ(v)

∞∫
0

e−attv−1dt, Re(v) > 0,

on the left-hand side of the generating function (3), we have

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)tn

= edehxzyt
1

Γ(ax)

∞∫
0

e−(1−ehyzt)u1uax−1
1 du1
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× 1

Γ(by)

∞∫
0

e−(1−dhxzt)u2uby−1
2 du2

1

Γ(cz)

∞∫
0

e−(1−dexyt)u3ucz−1
3 du3

=

∞∑
n=0

(dehxyzt)n

n!

1

Γ(ax)Γ(by)Γ(cz)

∞∫
0

∞∫
0

∞∫
0

e−u1−u2−u3

×e(ehyzu1+dhxzu2+dexyu3)tuax−1
1 uby−1

2 ucz−1
3 du1du2du3

=
1

Γ(ax)Γ(by)Γ(cz)

∞∑
n=0

∞∫
0

∞∫
0

∞∫
0

(dehxyz)ntn

n!
e−(u1+u2+u3)

×
∞∑
m=0

(ehyzu1+dhxzu2+dexyu3)mtm

m!
uax−1

1 uby−1
2 ucz−1

3 du1du2du3

=

∞∑
n=0

 1
n!Γ(ax)Γ(by)Γ(cz)

n∑
m=0

(
n
m

) ∞∫
0

∞∫
0

∞∫
0

e−(u1+u2+u3)uax−1
1 uby−1

2 ucz−1
3

(dehxyz)n−m(ehyzu1 + dhxzu2 + dexyu3)mdu1du2du3

 tn.

From the coefficents of tn on the both sides of the last equality, one can get the desired result. �

We now discuss some miscellaneous recurrence relations of the generalized Sylvester polynomials
of three variables. By differentiating each member of the generating function relation (3) with
respect to x, y, z and using

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k),

we arrive at the following (differential) recurrence relation for the generalized Sylvester polyno-
mials:

On the other hand, by differentiating each member of the generating function relation (3) with
respect to x, y, z, we have

∂

∂x
fn(x, y, z; a, b, c, d, e, h)

= (dehyz)fn−1(x, y, z; a, b, c, d, e, h)

+(a)

n−1∑
m=0

(ehyz)m+1

(m+ 1)
fn−m−1(x, y, z; a, b, c, d, e, h)

+(bdhyz)

n−1∑
m=0

(dhxz)mfn−m−1(x, y, z; a, b, c, d, e, h)
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+(cdeyz)

n−1∑
m=0

(dexy)mfn−m−1(x, y, z; a, b, c, d, e, h).

∂

∂y
fn(x, y, z; a, b, c, d, e, h)

= (dehxz)fn−1(x, y, z; a, b, c, d, e, h)

+(axehz)

n−1∑
m=0

(ehyz)mfn−m−1(x, y, z; a, b, c, d, e, h)

+(b)

n−1∑
m=0

(dhxz)m+1

(m+ 1)
fn−m−1(x, y, z; a, b, c, d, e, h)

+(cdexz)

n−1∑
m=0

(dexy)mfn−m−1(x, y, z; a, b, c, d, e, h).

∂

∂z
fn(x, y, z; a, b, c, d, e, h)

= (dehxy)fn−1(x, y, z; a, b, c, d, e, h)

+(axehy)

n−1∑
m=0

(ehyz)mfn−m−1(x, y, z; a, b, c, d, e, h)

+(bydhx)

n−1∑
m=0

(dhxz)mfn−m−1(x, y, z; a, b, c, d, e, h)

+(c)

n−1∑
m=0

(dexy)m+1

m+ 1
fn−m−1(x, y, z; a, b, c, d, e, h),

respectively.

Besides, by differentiating each member of the generating function relation (3) with respect to t,
we have the following another recurrence relation for these polynomials:

(n+ 1)fn+1(x, y, z; a, b, c, d, e, h)

= (dehxyz)fn(x, y, z; a, b, c, d, e, h)

+(ax)

n∑
m=0

(ehyz)m+1fn−m(x, y, z; a, b, c, d, e, h)

+(by)

n∑
m=0

(dhxz)m+1fn−m(x, y, z; a, b, c, d, e, h)

+(cz)

n∑
m=0

(dexy)m+1fn−m(x, y, z; a, b, c, d, e, h).
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6. The Generalized Sylvester polynomials of three variables and Appell
Functions

In 2012, Liu et al. derived bilateral generating functions for the Erkus-Srivastava polynomials and
generalized Lauricella functions [Liu et al. (2012)]. In the present section, we derive various fam-
ilies of bilateral generating functions for the generalized Sylvester polynomials of three variables
and the Appell functions. On the other hand, the four Appell functions, denoted by F1, F2, F3 and
F4, were generalized by Lauricella functions of n variables which are denoted by F (n)

A , F
(n)
B , F

(n)
C ,

F
(n)
D and

F
(2)
A = F2, F

(2)
B = F3, F

(2)
C = F4, F

(2)
D = F1,

where

F1[a, b, b′; c;x, y] =

∞∑
m,n=0

(a)m+n(b)m(b′)n
(c)m+n

xm

m!

yn

n!
,

F2[a, b, b′; c, c′;x, y] =

∞∑
m,n=0

(a)m+n(b)m(b′)n
(c)m(c′)n

xm

m!

yn

n!
,

F3[a, a′, b, b′; c;x, y] =

∞∑
m,n=0

(a)m(a′)n(b)m(b′)n
(c)m+n

xm

m!

yn

n!
,

F4[a, b; c, c′;x, y] =

∞∑
m,n=0

(a)m+n(b)m+n

(c)m(c′)n

xm

m!

yn

n!
.

Theorem 6.1.

The following bilateral generating function holds true:

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)F1(a1,−n, b2; c1;u1, u2)tn

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×F (5)
D

[
a1,−, ax, by, cz, b2; c1;

−u1xyzdeht,
−u1teyhz
1−ehyzt ,

−u1tdxhz
1−dhxzt ,

−u1tdxey
1−dexyt , u2

]
,

where F (s)
D is the Lauricella function.
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Proof:

By using the relationship (4), it is easily observed that

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)F1(a1,−n, b2; c1;u1, u2)tn

=

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)

×
n∑

m=0

∞∑
p=0

(a1)m+p(−n)m(b2)p
(c1)m+p

um1
m!

up2
p!
tn

=

∞∑
m,p=0

( ∞∑
n=0

(
n+m

m

)
fn+m(x, y, z; a, b, c, d, e, h)tn

)

×(a1)m+p(b2)p
(c1)m+p

(−u1t)
mu

p
2

p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×
∞∑

m,p=0

fm (x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt))

×(a1)m+p(b2)p
(c1)m+p

(
−u1t

(1− ehyzt)(1− dhxzt)(1− dexyt)

)m up2
p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×
∞∑

m,r,s,k,p=0

(a1)m+r+s+k+p(ax)r(by)s(cz)k(b2)p
(c1)m+r+s+k+p

×(−u1xyzdeht)
m

m!

(− u1teyhz
1−dhxzt)

s

s!

(− u1tdxhz
1−ehyzt)

r

r!

(− u1tdxey
1−dexyt)

k

k!

up2
p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×F (5)
D

[
a1,−, ax, by, cz, b2; c1;

−u1xyzdeht,
−u1teyhz
1−ehyzt ,

−u1tdxhz
1−dhxzt ,

−u1tdxey
1−dexyt , u2

]
. �

Theorem 6.2.

The following bilateral generating function holds true:
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∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)F2(a1,−n, b1; c1, c2;u1, u2)tn

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×F (5)
A [a1,−, ax, by, cz, b1; c1, c2;−u1xyzdeht,

−u1teyhz

1− ehyzt
,
−u1tdxhz

1− dhxzt
,
−u1tdxey

1− dexyt
, u2],

where F (s)
A is the Lauricella function.

Proof:

By using the relationship (4), it is easily observed that
∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)F2(a1,−n, b1; c1, c2;u1, u2)tn

=

∞∑
n=0

fn(x, y, z; a, b, c, d, e, h)

n∑
m=0

∞∑
p=0

(a1)m+p(−n)m(b1)p
(c1)m(c2)p

um1
m!

up2
p!
tn

=

∞∑
m,p=0

( ∞∑
n=0

(
n+m

m

)
fn+m(x, y, z; a, b, c, d, e, h)tn

)
(a1)m+p(b1)p
(c1)m(c2)p

(−u1t)
mu

p
2

p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×
∞∑

m,p=0

fm (x, y, z; a, b, c, d(1− ehyzt), e(1− dhxzt), h(1− dexyt))

×(a1)m+p(b1)p
(c1)m(c2)p

(
−u1t

(1− ehyzt)(1− dhxzt)(1− dexyt)

)m up2
p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×
∞∑

m,r,s,k,p=0

(a1)m+r+s+k+p(ax)r(by)s(cz)k(b1)p
(c1)m+r+s+k(c2)p

×(−u1xyzdeht)
m

m!

(− u1teyhz
1−dhxzt)

s

s!

(− u1tdxhz
1−ehyzt)

r

r!

(− u1tdxey
1−dexyt)

k

k!

up2
p!

= edxeyhzt(1− eyhzt)−ax(1− dxhzt)−by(1− dxeyt)−cz

×F (5)
A

[
a1,−, ax, by, cz, b1; c1,−,−,−, c2;

−u1xyzdeht,
−u1teyhz
1−ehyzt ,

−u1tdxhz
1−dhxzt ,

−u1tdxey
1−dexyt , u2

]
. �
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7. Conclusion

In this paper, we obtain some new properties for the Generalized Sylvester polynomials in several
variables. Various families of multilinear and multilateral generating functions and their miscella-
neous properties are obtained. We also derive an application giving certain families of bilateral gen-
erating functions for the Generalized Sylvester polynomials in several variables.With the method
used here, it is possible to obtain bilinear and bilateral generating functions for other polynomials.
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