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Abstract

The proposed model based on the global market strategies as for how the demand vary of the new
seasonal products when they entered in the markets. The model has developed for the seasonal
products or new consumer goods. The demand rate has considered Ramp-type based on the sea-
sonal products having a time-dependent deterioration rate. The mathematical formulation of the
proposed model is given. The present article consists two inventory model differ to each other as
(a) in the first model stock-out situation is considered as completely backlogged; (b) in the sec-
ond model partial backlogged stock-out situation is inserted. To obtain the optimal solution solved
the proposed model analytically and shown the convexity of the proposed models graphically by
using Mathematica 9.0. Numerical examples are given to test and verify the theoretical results. Ul-
timately, the sensitivity of the optimal solution with respect to major parameters with concluding
remarks are discussed.
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1. Introduction
“All organizations keep inventory; inventory includes a company’s raw materials, work in pro-
cess, supplies used in operations, and finished goods. The term inventory refers to the goods or
materials used by a firm for the purpose of production and sale. In the industries, firms, factories,
and markets, inventory models play a very important role."

The first inventory model is Economic order quantity model developed by Ford W. Harris (1915).
Next, Taft (1918) was relaxed one of the basic assumptions in Harris (1915) model, who used a
finite production rate, leading to the basic economic production quantity (EPQ) model, also known
as the economic manufacturing quantity (EMQ), economic lot size (ELS), or production lot size
(PLS) model. Ghare and Schrader (1963) extended the classical EOQ formula with considered an
exponential decay due to deterioration and developed a mathematical formulation of inventory with
deteriorating items. They developed differential equation can be written as dI(t)

dt +θ(t)I(t) = −D(t).
In 1973, Covert and Philip (1973) generalized the Ghare and Schuders (1963) model by using two
parameters Weibull distribution as dI(t)

dt +αβtβ−1I(t) = −D. Later it was generalized by Tadikmalla
(1978) using three-parameter gamma distribution taken to represent the time for deterioration.

In the classical EOQ model Harris (1915) assumed a constant demand rate, but Donaldson (1977)
extended it for linear trend demand rate made a may for its further improvement. Next, Hill (1995)
developed the concept of Ramp-type demand. In the Ramp-type demand rate, when a new brand of
consumer goods comes to the market, demand rate increases at the beginning of the season up to a
certain time period say µ and then remains to be constant for the rest of the time. The Ramp-type
demand rate has used for those type of items, whose demand is increased for a few time period and
then decreases such as, a new brand of consumers goods, etc. Several researchers worked on this
concept. The model of Wuu Wu et al. (1999), Chaudhri et al. (2006), Skouri et al. (2009), are few
noteworthy among them.

Next, we present a brief review of shortages. Many researchers have assumed that shortages are
completely backlogged. Later, Sachan (1984) allowed the shortages in EOQ model. In fact, during
the shortages period, some customers are not willing to wait until backlogging of the inventory
is completely backlogged situation. But, in the many cases, some customers are willing to wait
till backlogging is called partially backlogging. Thus, customer’s impatience was first considered
by Abad (1996) in EOQ model. Chang and Dye (1999) developed an inventory model in which
the proportion of customers who would like to accept backlogging is the reciprocal of a linear
function of the waiting time. Later several researchers have worked in this field. Some of them are
Skouri and Papachistos (2002), Teng (2002), San Jose et al. (2005, 2006), Skouri et al. (2009), Wu
(2001) and Sarkar et al. (2012), etc. In 1999, Wuu Wu et al. considered the deterioration rate of the
constant. But in practice, many items deteriorate due to the expiration of their maximum lifetime.
In other words, deterioration is proportional to time. Also, the maximum lifetime can be controlled
by production and it can be decided by the manufacturer. In this contrast, EOQ model given by
Manna and Choudhari (2006) is worth mentioning wherein deterioration of items and demand rate
both are time-dependent.

In the proposed model, we have developed an inventory model having a time-dependent deterio-



1078 Vandana

ration rate. The proposed model based on the seasonal products. The demand rate is considered
as Ramp-type. The mathematical formulation of the proposed model is given. Next, we discuss to
find the optimal solution. There is two inventory model have developed, in the first model we con-
sidered the backorder as complete backlog; and in the other model, we considered back ordering
as partial backlog. The numerical examples are given to test and verify the results and solve the
numerical examples via Mathematica software. Sensitivity analysis of the major parameters of the
proposed model is discussed. Next, we have shown the convexity of the proposed model through
graphically. This model is based on the real market environment, that is what happens when some
new seasonal goods come in the markets.

The outline of the proposed model is discussed as follows: In Section 2, we first discuss the as-
sumption and notation for our model. In Section 3, we provide the mathematical formulations of
our model. Numerical examples are discussed in Section 4. The sensitivity of the optimal solution
by changing the values of different system parameters is also discussed in Section 5. Finally, in
Section 6, we discuss the conclusion of our model.

2. Assumption and Notations

The fundamental assumptions and notation, used in the proposed model are given as follows:

(1) The Replenishment occurs instantaneously, i.e., lead time is negligible.
(2) The deterioration rate function θ(t) is considered as the time-dependent deterioration rate de-

fined as

θ(t) = αt, for t > 0 and 0 < α << 1.

(3) With above assumption we propose two model as below:

(i). In model 1, shortages are allowed, that is completely backlogged.
(ii). In model 2, shortage is allowed, that is partially backlogged. Let us assume β(t) be the

fraction where t is the waiting time up to the next replenishment. We consider β(t) =
1

1+δt , where δ is known as the backlogging parameter as a positive constant.

(4) The demand rate D(t) is assumed to be a Ramp-type function of time,

D(t) = D0[t− (t− µ)H(t− µ)], D0 > 0;

where, H(t− µ) is defined as follows:

H(t− µ) =


1; t ≥ µ.

0; t < µ.
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3. Notation

D0 : Demand rate.
S : The initial inventory level.
δ : Backlogging parameter and δ > 0.
H(t− µ) : The Heaviside’s function.
T : The fixed length of each production cycle.
C1 : inventory holding cost per unit.
C2 : Shortage cost per unit.
C3 : The purchasing cost per unit time.
C4 : The cost of lost sale per unit time.
I1 : The inventory level at time [0, µ].
I2 : The inventory level at time [µ, t1].
I3 : The inventory level at time [t1, T ].
Q : The total amount of inventory produced and purchased.
Q∗ : Optimum value of Q.
S∗ : Optimum value of S.
TC1(t1) : Average total cost per unit time for model 1.
TC2(t1) : Average total cost per unit time for model 2.

4. Mathematical Formulation and Solution

4.1. Model 1. For completely backlogged shortage.

In the proposed model, we have assumed that S > 0 is initial inventory level. Inventory level
will be decreased due to demand and deterioration rate during the time interval [0, µ] and reached
zero level at the time interval [µ, t1]. Shortage will occur during the time period [t1, T ], which is
considered as completely backlogged see in Figure 1.

Figure 1. An EOQ model of Ramp-type demand with complete backlogging,

During the time [0, µ], the inventory depletes due to the deterioration and demand both. Hence, the
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inventory level at any time during [0, µ] is described by the differential equation, given as below:
dI1(t)
dt + αtI1(t) = −D0t, 0 ≤ t ≤ µ. (1)

During [µ, t1] inventory depletes due to the deterioration and demand and reaches to zero level.
Hence, the differential equation is given as follows:

dI2(t)
dt + αtI2(t) = −D0µ, µ ≤ t ≤ t1. (2)

With the boundary condition I2(t1) = 0 and during the time interval [t1, T ] shortages will be occurs
which is completely backlogged described by the differential equation

dI3(t)
dt = −D0µ, t1 ≤ t ≤ T. (3)

When 0 < α << 1, we ignore the higher power of α with the boundary condition I3(t1) = 0. Using
the conditions I1(0) = S, I2(t1) = 0 and I3(t1) = 0, the solutions of Equations (1), (2) and (3) will
be given by

I1 =
D0

α (e
−αt2
2 − 1) + Se

−αt2
2 for 0 ≤ t ≤ µ. (4)

For solving Equation (2), we use our assumption that α << 1, then by taylor series expansion we
have

e
−αt2
2 = 1 + (−αt

2

2 ) + 1
2!(

−αt2
2 )2 + ...

.

Neglecting the higher power of α we get, e
−αt2
2 = 1 − 1

2αt
2. Then, the solution of Equation (2)

becomes

I2 = D0µαe
−αt2
2 [(t1 − t) + (t31−t3)

6 ] for µ ≤ t ≤ t1. (5)

The solution of Equation (3) is given as below:

I3 = −Doµ(t− t1) for t1 ≤ t ≤ T. (6)

Next, to find the maximum inventory level we use the condition as I1(t1) = 0. Then, we get the
value of maximum inventory level given as:

Imax = S = D0

α (e
αt21
2 − 1). (7)

Then, Equation (4) becomes

I1(t) =
D0

α (e
α(t21−t2)

2 − 1). (8)

Therefore, the total amount of deteriorated units is

D = S −
∫ t1

0
D(t)dt

= S −
[∫ µ

0
D0tdt+

∫ t1

µ
D0µdt

]
.



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 1081

Putting the value of S, in the above equation we have

D = D0

α (e
αt21
2 − 1)− D0µ2

2 −D0µ(t1 − µ). (9)

Therefore, the average total cost per unit time is given by

TC1(t1) =
C3D
T + C1

T

∫ t1

0
I(t)dt− C2

T

∫ T

t1

I(t)dt

TC1(t1) =
C3D
T + C1

T

(∫ µ

0
I1(t)dt+

∫ t1

µ
I2(t)dt

)
−C2

T

∫ T

t1

I3(t)dt.

(10)

Now, substituting the value of D from Equation (9) and I(t) given by Equation (4), (5) and (6) and
the value of S from Equation (7) in the above equation we have

TC1(t1) =
C3

T (D0

α (e(
1
2αt

2
1) − 1)− 1

2D0µ
2 −D0µ(t1 − µ))

+ C1

T (−1
6D0µ

3 + 1
2D0t1

2µ− 1
72D0µα(t1

6 − µ6) + 1
4(−

1
6D0µ− 1

2D0µα)(t1
4 − µ4)

+ 1
6D0µα(t1 +

1
6 t1

3)(t1
3 − µ3)− 1

2D0µ(t1
2 − µ2) +D0µ(t1 +

1
6 t1

3)(t1 − µ))
− C2

T (−1
2D0µ(T

2 − t12) +D0µt1(T − t1)).

(11)

The necessary condition for minimization of the average cost TC1(t1) is dTC1(t1)
dt1

= 0. Let, g(t1) =
dTC1(t1)

dt1
= 0. Then, the above equation yields the equation

g(t1) =
C3

T (D0t1e
(
1
2αt

2
1) −D0µ) +

C1

T (− 1
12D0µαt1

5 + (−1
6D0µ− 1

2D0µα)t1
3

+ 1
6D0µα(1 +

1
2 t1

2)(t1
3 − µ3) + 1

2D0µα(t1 +
1
6 t1

3)t1
2 +D0µ(1 +

1
2 t1

2)(t1 − µ)
+D0µ(t1 +

1
6 t1

3))− C2

T D0µ(T − t1).

(12)

Again, we consider that t1 = 0 then we obtain the value of g(0) as:

g(0) = −D0µ
6T (6C3 + C1µ

3α+ 6C1µ+ 6C2T ) < 0. (13)

Now, it is clear that g(0) < 0. Again we substitute the value t1 = T , then we have

g1(T ) =
D0

12T (12C3(Te
αT 2

2 − µ) + C1µαT
5 + 2C1µT

3(3 + α)− C1µ
4α(2 + T 2)

+24C1µT − 6C1µ
2(2 + T 2)). (14)

Next, take second-order differential equation of TC1(t1) and set d
2TC1(t1)
dt12 = f1(t1). Thus, we have

f1(t1) =
D0

12T (12C3e
αT 2

2 (1 + αt21) + 5C1µαt1
4 + 6C1µt1

2(3 + α)

− 2C1µ
2t1(αµ

2 + 6) + 12µ(2C1 + C2)) > 0.
(15)

By our assumption, it is clear that µ < T and µ < t1 and α << 1. Since, as the power of µ
increases the value of µ decreases, i.e., µ > µ2 > µ3 > . . . and the value of e(

1
2αT

2) > 1. So, the
above equation f1(t1) > 0 and it implies that, f1(t1) is a strictly monotone increasing function and
Equation (12) has a unique solution t1 = t∗1 ∈ (0, T ).
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Substituting t1 = t∗1 in the equation (7), we find that the optimum value of S is given by

S∗ = D0

α (e
α(t∗1)

2

2 − 1). (16)

And, the optimum value of Q is therefore given by

Q∗ = S∗ +Doµ(T − t∗1)

= D0

α (e
α(t∗1)

2

2 − 1) +Doµ(T − t∗1). (17)

And the minimum value of the average total cost TC1(t1) is thus TC1(t
∗
1).

4.2. Model 2. For partial backlogged shortages:

In the proposed model 2, we can assume all terms are same as in model 1. Let S > 0 be the initial
inventory level. Inventory level will be decreased due to demand and deterioration rate in the time
interval [0, µ] and reaches zero level at the time interval [µ, t1]. The shortage occurs during the time
period [t1, T ] which is partially backlogged see in Figure 2.

Figure 2. An EOQ model of Ramp-type demand with Partial backlogging.

The differential equations during the time interval [0, µ] is defined as
dI1(t)
dt + αtI1(t) = −D0t, 0 ≤ t ≤ µ. (18)

During the time interval [µ, t1] the inventory level is reaches to zero defined as below:
dI2(t)
dt + αtI2(t) = −D0µ, µ ≤ t ≤ t1. (19)

With the boundary condition I2(t1) = 0 and during the time interval [t1, T ] shortages will be occurs
which is partially backlogged defined as below

dI3(t)
dt = −D0µ

1+δ(T−t) , t1 ≤ t ≤ T. (20)

When 0 < α << 1, we ignore the higher power of α with the boundary condition I3(t1) = 0. Using
the conditions I1(0) = S, I2(t1) = 0 and I3(t1) = 0, the solutions of Equations (18), (19) and (20)
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will be given as below:

I1 =
D0

α (e
−αt2
2 − 1) + Se

−αt2
2 for 0 ≤ t ≤ µ. (21)

For solving Equation (19), we use our assumption that α << 1, then by Taylor series expansion we
have

e
−αt2
2 = 1 + (−αt

2

2 ) + 1
2!(

−αt2
2 )2 + ...

Neglecting the higher power of αwe get, e
−αt2
2 = 1− 1

2αt
2. Then solution of Equation (19) becomes

I2 = D0µαe
−αt2
2 [(t1 − t) + (t31−t3)

6 ] for µ ≤ t ≤ t1. (22)

The solution of Equation (20) is given as below:

I3 =
Doµ
δ ln

(
1+δ(T−t)
1+δ(T−t1)

)
. (23)

To find the maximum inventory level using the condition I1(t1) = 0. Thus, we get the value of the
maximum inventory level given as below:

Imax = S = D0

α (e
αt21
2 − 1). (24)

Then, Equation (21) becomes

I1(t) =
D0

α (e
α(t21−t2)

2 − 1). (25)

Therefore, the total amount of deteriorated cost units are as:

DC = S −
∫ t1

0
R(t)dt

= S −
[∫ µ

0
D0tdt+

∫ t1

µ
D0µdt

]
.

We put the value of S. Then, we have

DC = D0

α (e
αt21
2 − 1)− D0µ2

2 −D0µ(t1 − µ). (26)

Moreover, the amount of lost sales LT during the period [t1, T ) is

LT =

∫ T

t1

D0µ

[
δ(T−t)

1+δ(T−t)

]
dt

= D0µ
T

(δT−δt1−log(1+δT−δt1))
δ . (27)

Therefore, the average total cost per unit time is given by

TC2(t1) =
C3D
T + C1

T

∫ t1

0
I(t)dt− C2

T

∫ T

t1

I(t)dt+ C4

T LT

TC2(t1) =
C3D
T + C1

T

[∫ µ

0
I1(t)dt+

∫ t1

µ
I2(t)

]
−C2

T

∫ T

t1

I3(t)dt+
C4

T LT .
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Next, substituting the value of deterioration costDC from Equation (26) and I(t) given by Equation
(21), (22) and (23) and the value of S from Equation (24) in the above equation, we get

TC2(t1) =
C3
T (D0

α (e(
1
2αt1

2) − 1)− 1
2D0µ

2 −D0µ(t1 − µ)) + C1
T (− 1

6D0µ
3 + 1

2D0t1
2µ

− 1
72D0µα(t1

6 − µ6) + 1
4 (−

1
6D0µ− 1

2D0µα)(t1
4 − µ4) + 1

6D0µα(t1 + 1
6 t1

3)(t1
3 − µ3)

− 1
2D0µ(t1

2 − µ2) +D0µ(t1 + 1
6 t1

3)(t1 − µ)) + C2D0µ
T

(δT−δt1−log(1+δT−δt1))
δ2

+C4D0µ
T

(δT−δt1−log(1+δT−δt1))
δ . (28)

The necessary condition for minimization of the average cost TC2(t1) is dTC(t1)
dt1

= 0.

Assume, g2(t1) = dTC(t1)
dt1

= 0. Thus, we have

g2(t1) =
C3
T (D0t1e

(
1
2αt1

2) −D0µ) +
C1
T (− 1

12D0µαt1
5 + (− 1

6D0µ− 1
2D0µα)t1

3

+ 1
6D0µα(1 +

1
2 t1

2)(t1
3 − µ3) + 1

2D0µα(t1 + 1
6 t1

3)t1
2 +D0µ(1 +

1
2 t1

2)(t1 − µ)

+D0µ(t1 + 1
6 t1

3)) + C2D0µ
T

(−δ+ δ
(1+δT−δt1) )
δ2

+ C4D0µ
T

(−δ+ δ
(1+δT−δt1) )

δ . (29)

Set t1 = 0, in above Equation (29), we have

g2(0) = − D0µ
6T (1+δT )(6C3 + 6C3δT + C1µ

3α+ C1µ
3αδT + 6C1µ+ 6C1µδT + 6C2T + 6C4δT ).

< 0 (30)

Now it is clear that g(0) < 0. Again we substitute the value t1 = T , then we have

g2(T ) =
D0

12T (12C3(Te
αT 2

2 − µ) + C1µαT
5 + 2C1µT

3(3 + α)− C1µ
4α(2 + T 2)

+24C1µT − 6C1µ
2(2 + T 2)). (31)

Next, if f2(t1) = d2TC2(t1)
dt12 , then we have

f2(t1) =
C3
T (D0e

(
1
2αt1

2) +D0t1
2αe(

1
2αt1

2)) + C1
T (− 5

12D0µαt1
4 + 3(− 1

6D0µ− 1
2D0µα)t1

2

+ 1
6D0µαt1(t1

3 − µ3) +D0µα(1 +
1
2 t1

2)t12 +D0µα(t1 +
1
6 t1

3)t1 +D0µt1(t1− µ)

+2D0µ(1 +
1
2 t1

2)) + C2
T

D0µ
(1+δT−δt1)2 + C4

T
D0µδ

(1+δT−δt1)2

> 0. (32)

By our assumption, it is clear that µ < T and µ < t1 and α << 1. Since, as the power of µ
increases the value of µ decreases, i.e., µ > µ2 > µ3 > . . . and the value of e(

1
2αT

2) > 1. So, the
above equation f2(t1) > 0 and it implies that, f2(t1) is a strictly monotone increasing function and
Equation (30) has a unique solution t1 = t∗1 ∈ (0, T ).

Substituting t1 = t∗1 in the equation (24), we find that the optimum value of S is given by

S∗ = D0

α (e
α(t∗1)

2

2 − 1). (33)
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Again, the total amount of deterioration cost are∫ T

t∗1

Doµ
1+δ(T−t)dt.

Therefore, the optimal order quantity Q∗ is given by,

Q∗ = S∗ +

∫ T

t∗1

Doµ
1+δ(T−t)dt

= D0

α (e
α(t∗1)

2

2 − 1) +

∫ T

t∗1

Doµ
1+δ(T−t)dt. (34)

Remark.

If we consider as δ = 0 and α = 0, then we get the condition of complete backlogging and constant
deterioration rate. Thus our model will be reduced to the model of Wuu wu et al. (1999), Mandal
(2010) and Wu (2001).

5. Numerical Example

Figure 3. Convexity of TC1 with respect to t1
and T .

Figure 4. Convexity of TC2 with respect to t1
and T .

Example 5.1.

For the model 1, the values of the following parameters are to be taken in appropriate units will be
same as Wuu Wu et al. (1999). Let C1 = $3 per unit per year, C2 = $15 per unit per year, C3 = $5

per year, α = 0.01, D0 = 100 units, µ = 0.12 year and T = 1 year. Now putting all the values of the
parameters in equation (32), we find the value of t1 as

t1∗ = 0.3243 year.

This value of t1 also satisfies the sufficient condition for optimality taking t∗1 = 0.3243 year. Then,
the optimum values of total purchase quantity Q∗ and the initial inventory level are given by
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Q∗ = 13.3683 units and S∗ = 5.2599 units.

Also, the total average minimum cost per unit per unit time for time-dependent deterioration rate
is given by

TC1(t
∗
1) = 54.1165 units.

Figure 5. Total Order Quantity verses Total
Purchasing Price for model 1

Figure 6. Total Cost verses Total Purchasing
Price for model 1

Example 5.2.

For the model 2, assume the values of the parameters are same as model 1. Let the values of the
parameters of the inventory model be, C1 = 3$ per unit per year; C2 = $15 per unit per year;
C3 = $5 per unit per year; C4 =20 per units; α = 0.01 units; D0 =100 units; µ = 0.12 units; δ =4
year and T =1 year.

Now putting all the values of parameters in equation (29), we find the value of t1 as

t1∗ = 0.4520 year.

This value of t1 also satisfies the sufficient condition for optimally. Taking t∗1 = 0.9649 year, we get
the following optimum values for the total purchase quantity and the initial inventory as

Q∗ = 13.7024 units and S∗ = 10.2204 units.

Also, the average total cost per unit per unit time is given by

TC(t∗1) = 106.7633 units.

Figure 5 shows the graph of total cost versus purchasing cost. It shows when purchasing price
increases the total cost TC1 increases. Figure 6 shows the graph of total order quantity versus
purchasing price. It shows when purchasing price increases the total cost TC1 is also increasing.

Figure 7 shows the graph of total order quantity versus purchasing cost for model 2. It shows
when purchasing price increases the total order quantity Q∗ is decreased. Figure 8 shows the graph
of total cost versus purchasing price for model 2. It shows when purchasing price of model 2 is
increased then the total TC1 is also increasing.
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Figure 7. Total order quantity verses total pur-
chasing price for Model (2).

Figure 8. Total Cost TC2(t1) verses Total pur-
chasing price for Model (2).

Figure 9. Convexity of TC1(t1) with respect to
t1 and T .

Figure 10. Convexity of TC2(t1) with respect
to t1 and T .

6. Sensitivity Analysis

6.1. Sensitivity analysis of Model 1

Sensitivity analysis is used to determine how “sensitive” a model is according to changes in the
values of the parameters of the model and to changes in the structure of the model. In this paper, we
can see the sensitivity of the optimal solution of our Example 1 to changing the values of different
parameters associated with the model. The sensitivity analysis is performed by changing each of
the parameters C1, C2, C3, D0 and µ, α by −50%, −25%, 25% and 50% taking one parameter at a
time and keeping the remaining parameters unchanged. The result is presented in Table 1. On the
basis of results shown in Table 1, we can expose the following points as:

• TC∗
1 has high sensitivity if we change the parameters C2, D0 and µ while moderate sensitivity

to changes in C1 and C3. C2, D0, µ parameters are more affected our proposed model.
• t∗1 has high sensitivity if we change the parameters C2, C3 and µ at the same time moderate sen-

sitivity to change the parameter C1 at the same time as insensible to changes in D0 accordingly
the parameters D0 is constant in all process of our proposed inventory model.

• S∗ has high sensitivity if we change the parameters C2 and µ, even as moderately sensitive to
changes in the parameters C1, while intensely sensitive to changes in the parameters D0 and µ.
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Table 1. Effect of changes in the parameters of the Example 1.

Parameter PCPV (%) % change in
t∗1 S∗ Q∗ C∗

-50 9.085 8.43 2.11 -2.507
C1 -25 2.004 4.049 1.009 -1.22

25 -4.001 -3.847 -0.948 1.165
50 -7.691 -7.443 -1.824 2.276

-50 -28.21 -48.47 -10.85 -43.10
C2 -25 -13.19 -24.65 -5.860 -20.18

25 11.655 24.67 6.317 17.92
50 22.07 49.05 12.87 33.93

-50 71.53 0.060 19.13 -14.39
C3 -25 26.40 0.024 6.772 -5.776

25 -17.14 -0.036 -4.133 4.1379
50 -28.93 -0.060 -6.814 7.246

-50 0 0 -30.32 -49.99
D0 -25 0 0 -15.16 -24.99

25 0 0 15.16 24.99
50 0 0 30.32 50.00

-50 -40.39 -64.47 -49.81 -36.77
µ -25 -18.47 -33.53 -24.32 -15.99

25 15.72 33.93 22.79 12.35
50 29.35 67.35 44.01 21.87

Thus, the parameters D0 and µ are more affected the proposed inventory model.
• Q∗ has low sensitivity if we change the parametersC1, as highly sensitive to changes the param-

eters D0 and µ and lowly sensitive to change the parameters C2 and C3. Thus, the parameters
D0, µ are more affected by our model, so use them in our proposed model be careful.
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Table 2. Effect of changes in the parameters of Example 2.

Parameter PCPV (%) % change in
t∗1 S∗ Q∗ C∗

-50 4.955 10.16 6.956 -2.82
C1 -25 2.411 4.88 3.341 -1.37

25 -2.27 -4.507 -3.08 1.29
50 -4.44 -8.700 -5.944 2.530

-50 -5.00 -9.754 -6.664 -5.59
C2 -25 -2.477 -4.89 -3.347 -2.75

25 0.145 4.929 3.372 2.676
50 4.823 9.88 6.76 5.27

-50 38.34 91.47 62.86 -19.85
C3 -25 15.79 34.11 23.390 -7.861

25 -11.32 -21.37 -14.58 5.467
50 -19.73 -35.58 -24.22 9.464

-50 -28.69 -49.16 -33.37 -33.95
C4 -25 -13.73 -25.59 -17.45 -15.68

25 12.47 26.53 18.182 13.39
50 23.69 53.04 36.40 24.79

-50 0 -50 -50 -49.99
D0 -25 0 -25.000 -25 -24.99

25 0 25.00 24.99 25.00
50 0 50.00 50.00 50.00

-50 -43.23 -67.78 -60.86 -36.88
µ -25 -19.97 -35.97 -31.42 -15.77

25 16.90 36.68 30.96 11.51
50 31.06 71.83 59.93 19.66

-50 -7.035 -13.58 -1.82 -14.15
δ -25 -2.853 -5.62 -0.80 -5.96

25 2.101 4.250 0.63 4.607
50 3.71 7.57 1.141 8.30

6.2. Sensitivity analysis of Model 2

• TC∗
2 , has highly sensitive if we change the parameters C4, D0 and µ while moderately sensitive

to changes in C1, C2, C3 and δ. Thus, the changes in parameters C4, D0 and µ are more affected
our proposed inventory model.

• t∗1 has lowly sensitive if we change the parameters C1, C2 and δ at the same time as insensible
to changes in D0 while has highly sensitive if we change the parameters C3, C4 and µ. Thus,
the changes in parameters C3, C4 and µ are more affected our proposed inventory model.
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• S∗ has moderate sensitivity if we change the parameters C1, C2, and δ, even as highly sensitive
to changes in the parameters C3, C4, D0 and µ. Thus, the changes of parameters C3, C4, D0 and
µ are more affected our proposed inventory model.

• Q∗ has moderate sensitivity if we change the parameters C1, C2, and δ, even as highly sensitive
to changes in the parameters C3, C4, D0 and µ. Thus, the changes of parameters C3, C4, D0 and
µ are more affected our proposed inventory model.

7. Conclusion

From the above observation, we conclude that it is possible to derive two EOQ models for Ramp-
type demand rate with time-dependent deterioration rate. The first model, in which shortage is
allowed, that is complete backlogged and second model, in which shortage is allowed for a con-
venient fraction of demand which is partially backlogged. In the most of the models, the authors
considered their model with a constant deterioration rate. But, in real life situation, items may be
deteriorated, i.e., deterioration rate is proportional with time and the maximum lifetime can be
controlled by the production system, i.e., the manufacturer can fix the maximum lifetime of the
product.

In the sequel, we extend the inventory models for deteriorating items with Ramp-type demand rate
in several ways, given as below.

(1) In the proposed model, we use time-dependent deterioration rate.
(2) In the proposed model, we allow shortages which are completely backlogged and partial back-

logging with time-dependent deterioration rate.
(3) The proposed model is solved analytically to obtain the optimal solution, numerical example

and sensitivity analysis are discussed.

Also, the proposed model can assist the manager to determine accurately the optimal order quantity
and average total cost per unit. Moreover, the proposed model can be used in inventory control of
certain deteriorating items such as food items, electronic components, fashionable commodities
etc. In future work, it is also possible to incorporate realistic assumption such as probabilistic
demand as a finite rate of replenishment in the proposed model.
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