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Abstract
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contractive mappings in cone metric spaces. An application to the stability of J-iterative procedure
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1. Introduction

Let (X, d) be a metric space, mappings T, I : X → X be such that T (X) ⊂ I(X) and I(X) is
a complete subspace of X. It is interesting to observe that several real world physical problems
that arise in natural and engineering sciences can be expressed as a coincidence point equation
Tx = Ix, which can be solved by approximating a sequence {Ixn} ⊂ X generated by an iterative
procedure. For any x0 ∈ X, consider

Ixn+1 = f(T, xn) for n = 0, 1, · · · . (1)
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this iterative process stands for Singh-Harder-Hicks type (see, for instance, Singh et al. (2005)).
For f(T, xn) = Txn, the iterative process above yields the Jungck iteration (or J-iteration), namely,

Ixn+1 = Txn for n = 0, 1, · · · . (2)

It was introduced by Jungck (1976) and it becomes the Picard iterative procedure when I is iden-
tity map. Recently it was studied by many authors (Beg and Abbas (2006), Cho et al. (2008), Ciric
et al. (2008), Jesic et al. (2008), Jungck (1988), Mann (1953), Mishra (2017), Pant (1994)). We
obtain the sequence {Ixn} in the following way: After having chosen any arbitrary point of X as
initial point, say, x0 ∈ X, we compute a1 = Tx0 and solve Ix1 = a1 to get an approximate value of
x1, where x1 ∈ I−1a1. Notice that the choice of x1 is not unique if I is not one-one because then
we have several choice for x1 since we have to find x1 ∈ I−1a1. Therefore we have complications
in writing computer programs for solving equations with the procedure (S-HH), or in particular,
under J-iterative procedure. However in actual practice, we get Iy1 under discretization of func-
tion or rounding off which is close enough to Ix1. Next, we get Iy2 which is close to Ix2. So, in
general, instead of getting exact sequence {Ixn}, we get an approximate sequence {Iyn}. Further,
we notice that even if {Iyn} is convergent, the limit is not essentially equal to limn→∞ Txn and
here the stability of iterative procedures plays an important role in numerical computations. For
I = id, the above discussed issue brings us to the matter of stability of the Picard’s iterative pro-
cedure for a fixed point equation Tx = x in metric spaces (for this study, see Berinde (2002) and
Harder and Hicks (1988a, 1988b), which was initiated by Ostrowski (1967) and investigated by
many authors in metric spaces and in b-metric spaces (Mishra (2007), Mishra et al. (2015), Osilike
(1996), Rhoades (1990, 1993), Singh et al. (2005a,b,c), Singh and Prasad (2008)). Last decade wit-
nessed growing interest in fixed point and coincidence point theory in cone metric spaces which
was introduced by Huang and Zhang (2007). In (Huang and Zhang (2007)), the authors proved
some results concerning existence of fixed point for contractive mappings in cone metric spaces
where the assumption of normality of cone is demanded. Rezapour and Hamlbarani (2008) gener-
alized theorems of Huang and Zhang (2007) and proved some new fixed point theorems in cone
metric spaces. Afterward several researchers studied and obtained coincidence and common fixed
point with application in the setting of cone metric spaces (Azam et al. (2008, 2010), Filipovic
et al. (2011), Ilic and Rakojcevic (2008), Raja (2016)). In this paper, first we prove some new
coincidence point theorems in cone metric spaces (both for normal and non-normal case) and
secondly we initiate investigations of stability of Jungck-type iterative procedures for coincidence
equations in cone metric spaces. Our results generalize and extend results of Huang-Zhang (2007),
Rezapour-Hamlbarani (2008), Abbas-Jungck (2008) and the classical theorem of stability due to
Ostrowski (1967), respectively. Rest of the paper is organized as follow; Basic definition and ex-
amples about cone metric spaces are given in Section 2. Section 3 presents P-operator and Banach
operator pairs. In Section 4 we prove the existence of coincidence points and common fixed points
of operator pairs in cone metric spaces. Section 5, presents new results on the stability of pairs of
mappings satisfying contractive conditions as applications of the results obtained in Section 4.

2. Cone metric spaces

In this section, we review from existing literature (Azam et al. (2008), Huang and Zhang (2007),
Jankovica (2011), Kadelburg (2009)) some basic notations and definitions concerning to cone
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metric spaces.

Let E be a real Banach space and P be a subset of E. We say that P is a cone, if:
(1) P is non empty closed and P 6= {0};
(2) 0 ≤ a, b ∈ R and x, y ∈ P implies ax+ by ∈ P ;
(3) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering � in E with respect to P by u � v, if and only if
v − u ∈ P . We shall write u ≺ v, if u � v and u 6= v. We shall write u� v, if v − u ∈ IntP , where
IntP denotes the interior of P . The cone P is called normal if inf{‖x+y‖ : x, y ∈ P ∩∂B1(0)} > 0.

The norm on E is called semi monotone if there is a number κ > 0 such that for all x, y ∈ E,

0 � x � y implies ‖x‖ ≤ κ‖y‖. (2.1)

The least positive number κ satisfying above is called the normality constant of P . It is clear that
κ ≥ 1.The cone P is a non-normal cone if and only if there exist sequences un, vn ∈ P such that

0 � un � un + vn, un + vn → 0 but un 9 0.

In such case, one can see that the Sandwich theorem does not hold.

Example 2.1.

Let E = C1[0, 1] with ||x|| = ||x||∞ + ||x′||∞ on P = {x ∈ E x(t) ≥ 0 on [0, 1]}. Clearly, this cone
is not normal. To see it, consider xn(t) = 1−cos 3nt

3n+2 and yn(t) = 1+cos 3nt
3n+2 . Then we have

||xn|| = ||yn|| = 1 and ||xn + yn|| =
2

3n+ 2
→ 0.

The cone P is called regular if every increasing sequence which is bounded from above is
convergent. That is, if {xn} is a sequence such that x1 � x2 � ... � xn � ... � y ( or
y � ... � xn � xn−1 � ... � x2 � x1) for some y ∈ E, then there is a x ∈ X such that
‖xn − x‖ → 0, n → ∞. Equivalently the cone P is regular if and only if every increasing (re-
spectively decreasing) sequence which is bounded from above (respectively below) is convergent.
It is well known that a regular cone is a normal cone.

Definition 2.2.

Let X be a non empty set. Suppose the mapping d : X ×X → E satisfies
(d1) 0 � d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈M ;
(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈M .

Then, d is called a cone metric on X, and (X, d) is called a cone metric space.
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Notice that cone metric spaces generalizes metric spaces. Furthermore, we shall follow the termi-
nology of Huang and Zhang (2007) throughout this paper for the other details concerning to cone
metric spaces.

Let(X, d) be a cone metric space. Let {xn} be a sequence in X. We say that {xn} is convergent to
some x ∈ X, if for any c ∈ E with 0 � c there exists N such that for all n > N , d(xn, x) � c. We
denote this by limn→∞ xn = x. We say that {xn} is a Cauchy sequence in X if for any c ∈ E with
0� c there exists N such that for all n,m > N, d(xn, xm)� c.

A space X is said to be complete cone metric space if every Cauchy sequence in X is convergent
in X. If {xn} is convergent to some x ∈ X, then {xn} is a Cauchy sequence. If P is a normal
cone with normal constant κ then: (i) {xn} converges to x iff limn→∞ d(xn, x) = 0; (ii) {xn} is a
Cauchy sequence iff limn,m→∞ d(xn, xm) = 0; (iii) if {xn} and {yn} are two sequences in X such
that limn→∞ xn = x, limn→∞ yn = y for some x, y ∈ X, then limn,m→∞ d(xn, yn) = d(x, y).

Ordered pair (T, I) of two self-maps of a metric space (X, d) is called a Banach operator pair, if
T (F (I)) ⊆ F (I) i.e. the set F (I) of fixed point of I is T -invariant. A commuting pair (T, I) is a
Banach operator pair but in general converse is not true, see (Beg et al. (2010), Chen and Li (2007),
Pathak and Hussain (2008)). If (T, I) is a Banach operator pair then (I, T ) need not be a Banach
operator pair [Chen and Li (2007), Example 1]. If the self-maps T and I of X satisfy

d(ITx, Tx) ≤ kd(Ix, x), (2.2)

for all x ∈ X and k ≥ 0, then (T, I) is a Banach operator pair. In particular , when T = I and X is
a normed space, (3.1) can be rewritten as

‖T 2x− Tx‖ ≤ k‖Tx− x‖.

Such T is called a Banach operator of type k in Subrahmanyam (1977) (also see Habiniak (1989),
Pathak and Shahzad (2008)).
Let C(T, I) denote the set of coincident points of the pair (T, I). The ordered pair (T, I) is called
P-operator pair, if

d(u, Tu) ≤ diam C(T, I) ∀u ∈ C(T, I).

If the self-maps T and I of X satisfy T (C(T, I)) ⊆ C(T, I), then (T, I) is a P-operator pair.

Let M be any non empty subset of X. Then T is said to be universal P-operator, if

T (M) ⊆M. (U)

Specially, whenM = F (I) and T satisfies condition (U), then we say that the pair (T, I) is a Banach
operator pair. The concept of P -operator pair is, indeed, independent of the concept of Banach op-
erator pair .
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3. Coincidence point

We now state and prove the main result of this paper as follows:

Theorem 3.1.

Let (X, d) be a cone metric space and P a normal cone with normality constantK. Let T, I : X → X

be mappings such that T (X) ⊂ I(X) and I(X) is a complete subspace ofX. If there exists λ ∈ [0, 1)

such that Kλ < 1 and

d(Tx, Ty) � λ u, (3.1)

where u ∈ {d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), [d(Ix, Ty) + d(Iy, Tx)]/2} for all x, y ∈ X, then T and I
have a unique point of coincidence in X. Further, if T and I are P-operator pair, then T and I have
a unique common fixed point.

Proof.

Pick x0 in X and keep it fixed. By our assumption T (X) ⊂ I(X) we can choose a point x1 ∈ X
such that Tx0 = Ix1. Continuing this process we can choose xn+1 ∈ X such that Txn = Ixn+1 for
all n ∈ N,

d(Ixn, Ixn+1) = d(Txn−1, Txn) � λ u,

where u ∈ {d(Ixn−1, Ixn), d(Ixn−1, Txn−1), d(Ixn, Txn), 12 [d(Ixn−1, Txn) +d(Ixn, Txn−1)]}
i.e., u ∈ {d(Ixn−1, Ixn), d(Ixn−1, Ixn), d(Ixn, Ixn+1),

1
2d(Ixn−1, Ixn+1)}, i.e., u ∈

{d(Ixn−1, Ixn), d(Ixn, Ixn+1),
1
2d(Ixn−1, Ixn+1)}.

Notice that u 6= d(Ixn, Ixn+1), otherwise d(Ixn, Ixn+1) � λd(Ixn, Ixn+1), which, in turn, implies
that ‖d(Ixn, Ixn+1)‖ ≤ Kλ‖d(Ixn, Ixn+1)‖ < ‖d(Ixn, Ixn+1)‖, a contradiction. On the other hand,
if u = 1

2d(Ixn−1, Ixn+1), then

d(Ixn, Ixn+1) �
λ

2
d(Ixn−1, Ixn+1) �

λ

2
[d(Ixn−1, Ixn) + d(Ixn, Ixn+1)],

which implies that

d(Ixn, Ixn+1) �
λ

2− λ
d(Ixn−1, Ixn).

Thus, for all n ∈ N, we have

d(Ixn, Ixn+1) � kd(Ixn−1, Ixn) � k2d(Ixn−2, Ixn−1)
� k3d(Ixn−3, Ixn−2) � · · · � knd(Ix0, Ix1),

where k = max
{
λ, λ

2−λ

}
. Clearly, k ∈ [0, 1). Now, for all n,m ∈ N, n > m, we have

d(Ixm, Ixn) � d(Ixm, Ixm+1) + d(Ixm+1, Ixm+2) + . . .+ d(Ixn−1, Ixn)

� (km + km+1 + . . .+ kn−1)d(Ix0, Ix1)

� km

1− k
d(Ix0, Ix1).
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Let c ∈ E with 0� c be arbitrary. Choose δ > 0 such that c+Nδ(0) ⊂ P , where Nδ(0) = {y ∈ E :

‖y‖ < δ}. Then, there exists N1 ∈ N such that, for all m > N1, we have km

1−kd(Ix0, Ix1) ∈ Nδ(0),
that is, km

1−kd(Ix0, Ix1)� c. Thus,

d(Ixm, Ixn) �
km

1− k
d(Ix0, Ix1)� c,

for all n > N1. It follows that {Ixn} is a Cauchy sequence. Since I(X) is complete, and
so {Ixn} converges to some w ∈ I(X). Thus, there exists N2 ∈ N such that d(Ixn, w) �
(1−λ)c

2 , d(Ixn, Txn) � c
2 for all n > N2. Since w ∈ I(X), it follows that w = Iz for some z ∈ M .

By (3.1), we obtain

d(Txn, T z) � λ v

for some v ∈ {d(Ixn, Iz), d(Ixn, Txn), d(Iz, Tz), [d(Ixn, T z) + d(Iz, Txn)]/2}. Now there arises
four cases:
Case(i): If v = d(Ixn, Iz), then

d(Tz, Iz) � d((Txn, T z) + d(Txn, Iz) � λd(Ixn, Iz) + d(Ixn+1, Iz)

� (1− λ)c
2

+
(1− λ)c

2
= (1− λ)c� c, for all n > N2.

Case(ii): If v = d(Ixn, Txn), then

d(Tz, Iz) � d((Txn, T z) + d(Txn, Iz) � λd(Ixn, Txn) + d(Ixn+1, Iz)

� λc

2
+

(1− λ)c
2

=
c

2
� c, for all n > N2.

Case(iii): If v = d(Iz, Tz), then

d(Tz, Iz) � d(Txn, T z) + d(Txn, Iz) � λd(Iz, Tz) + d(Ixn+1, Iz), for all n > N2

implying that

d(Tz, Iz) � 1

1− λ
d(Ixn+1, Iz)�

c

2
� c, for all n > N2.

Case(iv): If v = [d(Ixn, T z) + d(Iz, Txn)]/2, then

d(Tz, Iz) � d(Txn, T z) + d(Txn, Iz) �
λ

2
[d(Ixn, T z) + d(Iz, Txn)] + d(Txn, Iz)

=
λ

2
d(Ixn, T z) + (1 +

λ

2
)d(Iz, Txn)

� λ

2
[d(Ixn, Iz) + d(Iz, Tz)] + (1 +

λ

2
)d(Iz, Ixn+1), for all n > N2

implying that

d(Tz, Iz) � λ

2− λ
d(Ixn, Iz) +

2 + λ

2− λ
d(Iz, Igxn+1)

� (1− λ)λc
2(2− λ)

+
(1− λ)(2 + λ)c

2(2− λ)
� c for all n > N2.

Thus, d(Tz, Iz) � c
j , for all j ∈ N. It follows that c

j − d(Tz, Igz) ∈ IntP . Since limj→∞
c
j = 0

and P is closed, we get −d(Tz, Iz) ∈ P , too. Hence, by definition of cone, d(Tz, Iz) = 0, that is,
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Tz = Iz = p.

Now we show that T and I have a unique point of coincidence. For this, assume that there exists
another point z′ ∈ X such that Tz′ = Iz′. Hence

0 � d(Tz, Tz′) � λu

where u ∈ {d(Iz, Iz′), d(Iz, Tz), d(Iz′, T z′), [d(Iz, Tz′) + d(Iz′, T z)]/2} this implies, that (λ −
1)d(Tz, Tz′) ∈ P . But −(λ− 1)d(Tz, Tz′) ∈ P , so d(Tz, Tz′) = 0.

Since T and I are P-operator pair and C(T, I) is singleton, we find that

d(z, Tz) ≤ diam C(T, I) = 0 ∀z ∈ C(T, I).

It follows that z = Tz and z is a point of coincidence of T and I. But, z is the unique point of
coincidence of T and I, so z = Tz = Iz. Therefore, T and I have a unique common fixed point.

By a proper blend of proof and arguing as in Theorem 3.1, we can prove the following theorems
3.1′ and 3.1′′

Theorem 3.1′.

Let (X, d) be a cone metric space and P a normal cone with normality constantK. Let T, I : X → X

be mappings such that T (X) ⊂ I(X) and I(X) is a complete subspace ofX. If there exists λ ∈ [0, 1)

such that Kλ < 1 and

d(Tx, Ty) � λ u, (3.1′)

where u ∈ {d(Ix, Iy), [d(Ix, Tx) + d(Iy, Ty)]/2, d(Ix, Ty), d(Iy, Tx)} for all x, y ∈ X, then T and I
have a unique point of coincidence in X. Further, if T and I are P-operator pair, then T and I have
a unique common fixed point.

Theorem 3.1′′.

Let (X, d) be a cone metric space and P a normal cone with normality constantK. Let T, I : X → X

be mappings such that T (X) ⊂ I(X) and I(X) is a complete subspace ofX. If there exists λ ∈ [0, 1)

such that Kλ < 1 and

d(Tx, Ty) � λ u, (3.1′′)

where u ∈ {d(Ix, Iy), [d(Ix, Tx) + d(Iy, Ty)]/2, [d(Ix, Ty) + d(Iy, Tx)]/2} for all x, y ∈ X, then T
and I have a unique point of coincidence in X. Further, if T and I are P-operator pair, then T and
I have a unique common fixed point.

We now drop the normality requirement of the cone metric space in the next result.
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Theorem 3.2.

Let (X, d) be a cone metric space and P a cone in E. Let T, I : X → X be mappings such that
T (X) ⊂ I(X) and I(X) is a complete subspace of X. If there exist k1 ∈ [0, 1), k2, k3 ∈ [0, 12) and

d(Tx, Ty) � u, (3.2)

where 0 6= u ∈ {k1d(Ix, Iy), k2[d(Ix, Tx) + d(Iy, Ty)], k3[d(Ix, Ty) + d(Iy, Tx)]}, for all x, y ∈ X,
then T and I have a unique point of coincidence in X. Further, if T and I are P-operator pair, then
T and I have a unique common fixed point.

Proof.

Pick x0 in X and keep it fixed. By our assumption T (X) ⊂ I(X) we can choose a point x1 ∈ X
such that Tx0 = Ix1. Continuing this process we can choose xn+1 ∈ X such that Txn = Ixn+1 for
all n ∈ N,

d(Ixn, Ixn+1) = d(Txn−1, Txn) � u,

where
u ∈ {k1d(Ixn−1, Ixn), k2[d(Ixn−1, Txn−1) + d(Ixn, Txn)], k3[d(Ixn−1, Txn) + d(Ixn, Txn−1)]},
i.e.,

u ∈ {k1d(Ixn−1, Ixn), k2[d(Ixn−1, Ixn) + d(Ixn, Ixn+1)], k3d(Ixn−1, Ixn+1)}.

Now there arises three cases:
Case (i): If u = k1d(Ixn−1, Ixn), then we have

d(Ixn, Ixn+1) � k1d(Ixn−1, Ixn).

Case (ii): If u = k2[d(Ixn−1, Ixn) + d(Ixn, Ixn+1)], then we have

d(Ixn, Ixn+1) �
k2

1− k2
d(Ixn−1, Ixn).

Case (iii): If u = k3d(Ixn−1, Ixn+1), then we have

d(Ixn, Ixn+1) � k3d(Ixn−1, Ixn+1)] � k3[d(Ixn−1, Ixn) + d(Ixn, Ixn+1)],

which gives

d(Ixn, Ixn+1) �
k3

1− k3
d(Ixn−1, Ixn).

Thus, for all n ∈ N, we have

d(Ixn, Ixn+1) � kd(Ixn−1, Ixn)

where k = max
{
k1,

k2
1−k2 ,

k3
1−k3

}
. Clearly, k ∈ [0, 1). Now, for all n,m ∈ N, n > m, we have

d(Ixm, Ixn) � d(Ixm, Ixm+1) + d(Ixm+1, Ixm+2) + . . .+ d(Ixn−1, Ixn)

� (km + km+1 + . . . kn−1)d(Ix0, Ix1)

� km

1− k
d(Ix0, Ix1).
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Now, arguing as in Theorem 3.1, we get for each c ∈ E with 0 � c, there exists N1 ∈ N such that
for all m > N1,

d(Ixm, Ixn)� c,

that is, {Ixn} is a Cauchy sequence. Since I(X) is complete, thus {Ixn} converges to some p ∈
I(X). Therefore, there exists N2 ∈ N such that d(Ixn, p)� (1−k)c

2 , d(Ixn, Txn)� c
2 , for all n > N2.

Since p ∈ I(X), it follows that p = Iz for some z ∈ X. By (3.2), we obtain

d(Txn, T z) � v

for some v ∈ {k1d(Ixn, Iz), k2[d(Ixn, Txn) + d(Iz, Tz)], k3[d(Ixn, T z) + d(Iz, Txn)]}. Now, there
arises three cases:
Case(i): If v = k1d(Ixn, Iz), then

d(Tz, Iz) � d((Txn, T z) + d(Txn, Iz) � k1d(Ixn, Iz) + d(Ixn+1, Iz)

� k(1− k)c
2

+
(1− k)c

2
= (1− k2)c� c, for all n > N2.

Case(ii): If v = k2[d(Ixn, Txn) + d(Iz, Tz)], then

d(Tz, Iz) � d((Txn, T z) + d(Txn, Iz)

� k2[d(Ixn, Txn) + d(Iz, Tz)] + d(Ixn+1, Iz),

which gives

d(Tz, Iz) � k2
1− k2

d(Ixn, Txn) +
1

1− k2
d(Ixn+1, Iz)

� kd(Ixn, Txn) + 2d(Ixn+1, Iz)

� kc

2
+

2(1− k)c
2

= (1− k

2
)c� c, for all n > N2.

Case(iii): If v = k3[d(Ixn, T z) + d(Iz, Txn)], then

d(Tz, Iz) � d(Txn, T z) + d(Txn, Iz) � k3[d(Ixn, T z) + d(Iz, Txn)] + d(Txn, Iz)

= k3d(Ixn, T z) + (1 + k3)d(Iz, Txn)

� k3[d(Ixn, Iz) + d(Iz, Tz)] + (1 + k3)d(Iz, Ixn+1), for all n > N2

implying that

d(Tz, Iz) � k3
1− k3

d(Ixn, Iz) +
1 + k3
1− k3

d(Iz, Ixn+1)

� kd(Ixn, Iz) + (2 + k)d(Iz, Ixn+1)

� (1− k)kc
2

+
(1− k)(2 + k)c

2
� c, for all n > N2.

Thus, d(Tz, Iz) � c
j , for all j ∈ N. It follows that c

j − d(Tz, Iz) ∈ IntP . Since limj→∞
c
j = 0

and P is closed, we get −d(Tz, Iz) ∈ P , too. Hence, by definition of cone, d(Tz, Iz) = 0, that is,
Tz = Iz = p.
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Now, we show that T and I have a unique point of coincidence. For this, assume that there exists
another point z′ ∈ X such that Tz′ = Iz′. Hence

0 � d(Tz, Tz′) � u

where 0 6= u ∈ {k1d(Iz, Iz′), k2[d(Iz, Tz) + d(Iz′, T z′)], k3[d(Iz, Tz
′) + d(Iz′, T z)]} this implies

that either (k1 − 1)d(Tz, Tz′) ∈ P or (2k3 − 1)d(Tz, Tz′) ∈ P . But −(k1 − 1)d(Tz, Tz′) ∈ P and
−(2k3 − 1)d(Tz, Tz′) ∈ P , so d(Tz, Tz′) = 0, which proves that T and I have a unique point of
coincidence.

The uniqueness of common fixed point, if T and I are P-operator pair, is obvious.

Setting k2 = k3 = 0, k1 = k3 = 0 and k1 = k2 = 0, respectively, in Theorem 3.2, we immediately
obtain the following results as corollaries of Theorem 3.2.

Corollary 3.3.

Let (X, d) be a cone metric space and P a cone in E. Let T, I : X → X be mappings such that
T (X) ⊂ I(X) and I(X) is a complete subspace of X. If there exists k1 ∈ [0, 1) and

d(Tx, Ty) � k1d(Ix, Iy) (3.3)

for all x, y ∈ X, then T and I have a unique point of coincidence in X. Further, if T and I are
P-operator pair, then T and I have a unique common fixed point.

Corollary 3.4.

Let (X, d) be a cone metric space and P a cone in E. Let T, I : X → X be mappings such that
T (X) ⊂ I(X) and I(X) is a complete subspace of X. If there exists k2 ∈ [0, 12) and

d(Tx, Ty) � k2[d(Ix, Tx) + d(Iy, Ty)] (3.4)

for all x, y ∈ X, then T and I have a unique point of coincidence in X. Further, if T and I are
P-operator pair, then T and I have a unique common fixed point.

Corollary 3.5.

Let (X, d) be a cone metric space and P a cone in E. Let T, I : X → X be mappings such that
T (X) ⊂ I(X) and I(X) is a complete subspace of X. If there exists k3 ∈ [0, 12) and

d(Tx, Ty) � k3[d(Ix, Ty) + d(Iy, Tx)] (3.5)

for all x, y ∈ X, then T and I have a unique point of coincidence in X. Further, if T and I are
P-operator pair, then T and I have a unique common fixed point.

The following example shows that there exist mapping T : X → X satisfying the assumptions of
Theorem 3.1 but does not satisfy the assumptions of Huang and Zhang (2007) in their Theorem 1.
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Example 3.6.

Let E = R2, the Euclidean plane, and P = {(x, y) ∈ R2 : x, y ≥ 0} be a normal cone in E with
normality constant K = 1. Let X = {(x, 0) ∈ R2 : 0 ≤ x < 2} ∪ {(0, x) ∈ R2 : 0 ≤ x < 2} ⊂ E.
Define d : X ×X → P by

d((x, 0), (y, 0)) =
(3
2
(x+ y), (x+ y)

)
, d((0, x), (0, y)) =

(
(x+ y),

2

3
(x+ y)

)
,

and d((x, 0), (0, y)) = d((0, y), (x, 0)) =
(3
2
x+ y, x+

2

3
y
)
.

Obviously (X, d) is a P -metric space. Let T, I : X → X be defined by

T (x, 0) =

{
(0, 14x

2), for 0 ≤ x < 1,

(0, 0), for 1 ≤ x < 2,
T (0, x) =

{
(14x

2, 0), for 0 ≤ x < 1,

(0, 0), for 1 ≤ x < 2,

I(x, 0) =

{
(0, 12x

2), for 0 ≤ x < 1,

(12 , 0), for 1 ≤ x < 2,
I(0, x) =

{
(12x

2, 0), for 0 ≤ x < 1,

(0, 12), for 1 ≤ x < 2.

Notice T (X) = {(0, x) : 0 ≤ x < 1
4} ∪ {(x, 0) : 0 ≤ x < 1

4}} ⊂ {(0, x) : 0 ≤ x ≤ 1
2} ∪ {(x, 0) :

0 ≤ x ≤ 1
2} = I(X). Observe that I(X) is complete. Taking λ ∈ [12 , 1), one can easily observe that

condition (3.1) of Theorem 3.1 is satisfied. Indeed, we notice:

For x, y ∈ [0, 1), we have

(i) d(T (x, 0), T (y, 0)) = d
(
(0,

1

4
x2), (0,

1

4
y2)
)
=
(1
4
(x2 + y2),

1

6
(x2 + y2)

)
=

1

2

(1
2
(x2 + y2),

1

3
(x2 + y2)

)
=

1

2
d
(
(0,

1

2
x2), (0,

1

2
y2)
)
� λd(I(x, 0), I(y, 0));

(ii) d(T (0, x), T (0, y)) = d
(
(
1

4
x2, 0), (

1

4
y2, 0)

)
=
(3
8
(x2 + y2),

1

4
(x2 + y2)

)
=

1

2

(3
4
(x2 + y2),

1

2
(x2 + y2)

)
=

1

2
d
(
(
1

2
x2, 0), (

1

2
y2, 0)

)
� λd(I(0, x), I(0, y));

(iii) d(T (x, 0), T (0, y)) = d
(
(0,

1

4
x2), (

1

4
y2, 0)

)
=
(3
8
y2 +

1

4
x2,

1

4
y2 +

1

6
x2
)

=
1

2

(3
4
y2 +

1

2
x2,

1

2
y2 +

1

3
x2
)

=
1

2
d
(
(0,

1

2
x2), (

1

2
y2, 0)

)
� λd(I(x, 0), I(0, y));
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(iv) d(T (0, x), T (y, 0)) = d
(
(
1

4
x2, 0), (0,

1

4
y2)
)
=
(3
8
y2 +

1

4
x2,

1

4
y2 +

1

6
x2
)

=
1

2

(3
4
y2 +

1

2
x2,

1

2
y2 +

1

3
x2
)

=
1

2
d
(
(
1

2
x2, 0), (0,

1

2
y2)
)
� λd(I(0, x), I(y, 0)).

For x, y ∈ [1, 2), we have

(v) d(T (x, 0), T (y, 0)) = d((0, 0), (0, 0))

� λd
(
(
1

2
, 0), (

1

2
, 0)
)
= λd(I(x, 0), I(y, 0));

(vi) d(T (0, x), T (0, y)) = d((0, 0), (0, 0))

� λd
(
(0,

1

2
), (0,

1

2
)
)
= λd(I(0, x), I(0, y));

(vii) d(T (x, 0), T (0, y)) = d((0, 0), (0, 0))

� λd
(
(
1

2
, 0), (0,

1

2
)
)
= λd(I(x, 0), I(0, y));

(viiii) d(T (0, x), T (y, 0)) = d((0, 0), (0, 0))

� λd
(
(0,

1

2
), (

1

2
, 0)
)
= λd(I(0, x), I(y, 0)).

For x ∈ [0, 1), y ∈ [1, 2), we have

(ix) d(T (x, 0), T (y, 0)) = d
(
(0,

1

4
x2), (0, 0)

)
=
(1
4
x2,

1

6
x2
)
=

1

2

(1
2
x2,

1

3
x2
)

� 1

2

(3
4
+

1

2
x2,

1

2
+

1

3
x2
)

� 1

2
d
(
(0,

1

2
x2), (

1

2
, 0)
)

� λd(I(x, 0), I(y, 0))
(

Notice (
3

8
,
1

4
) ∈ P

)
;

(x) d(T (0, x), T (0, y)) = d
(
(
1

4
x2, 0), (0, 0)

)
=
(3
8
x2,

1

4
x2
)
=

1

2

(3
4
x2,

1

2
x2
)

� 1

2

(3
4
x2 +

1

2
,
1

2
x2 +

1

3

)
=

1

2
d
(
(
1

2
x2, 0), (0,

1

2
)
)

� λd(I(0, x), I(0, y))
(

Notice (
1

4
,
1

6
) ∈ P

)
;
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(xi) d(T (x, 0), T (0, y)) = d
(
(0,

1

4
x2), (0, 0)

)
=
(1
4
x2,

1

6
x2
)
=

1

2

(1
2
x2,

1

3
x2
)

� 1

2

(1
2
x2 +

1

2
,
2

3
(
1

2
x2 +

1

2
)
)

=
1

2
d
(
(0,

1

2
x2), (0,

1

2
)
)

� λd(I(x, 0), I(0, y))
(

Notice (
1

4
,
1

6
) ∈ P

)
;

(xii) d(T (0, x), T (y, 0)) = d
(
(
1

4
x2, 0), (0, 0)

)
=
(1
4
x2,

1

6
x2
)
=

1

3

(3
4
x2,

1

2
x2
)

� 1

2

(3
2
(
1

2
x2 +

1

2
),
1

2
x2 +

1

2

)
=

1

2
d
(
(
1

2
x2, 0), (

1

2
, 0)
)

� λd(I(0, x), I(y, 0))
(

Notice (
3

8
,
1

4
) ∈ P

)
.

Further, we notice that C(T, I) = {(0, 0)} and ‖(0, 0) − T (0, 0)‖ = ‖(0, 0)‖ = 0 = diamC(T, I). It
follows that (T, I) is a P-operator pair.

Therefore, all the assumptions of Theorem 3.1 are fulfilled and z = (0, 0) is a unique coincidence
point of T and I and that z = (0, 0) is a unique common fixed point of T and I. On the other hand,
the main result of Huang and Zhang (2007) in their Theorem 1 is not applicable even if I = id, the
identity map of X. This fact is obvious because X is not complete.

Remark 3.7.

(i). It follows from Example 3.6 that if X is a bounded space, then Theorem 3.1 essen-
tially generalizes the main result of Huang and Zhang (2007) in their Theorem 1.

(ii). Corollary 3.3 generalizes Abbas and Jungck (2008) in their Theorem 2.1 because
now the assumption of normality of cone is not required.

(iii). Corollary 3.3 by taking I = id also generalizes Rezapour and Hamlbarani (2008) in
their Theorem 2.3.

(iv). Corollary 3.4 generalizes result of Abbas and Jungck (2008) in Theorem 2.3 and
Rezapour and Hamlbarani (2008) in their Theorem 2.6.

(v). Corollary 3.5 generalizes Abbas and Jungck (2008) in Theorem 2.4 and Rezapour
and Hamlbarani (2008) in their Theorem 2.7.

4. Application to stability of J-iterative procedure

We now present some results on the stability of pairs of mappings satisfying contractive conditions
considered in Section 3. But first we introduce the definition of stability of iterative procedure for
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the coincidence point of pair of mappings. Note that the definition of stability of general iterative
procedure in the setting of metric spaces was initially introduced by Singh et al. (2005b).

Definition 4.1

Let (X, d) be a cone metric space, P a normal cone with normality constant K and let T, I : X → X

be mappings such that T (X) ⊂ I(X), and let z be a coincidence point of T and I. Suppose Tz =

Iz = p for some p ∈ X and for any x0 ∈ X, suppose that {Ixn} generated by the general iterative
procedure

Ixn+1 = f(T, xn), n = 0, 1, 2, · · · ,

converge to p. Suppose {Iyn} ⊂ X is an arbitrary sequence. Set the nth iterative error εn as

εn = d(Iyn+1, f(T, yn)), n = 0, 1, 2, · · · .

Then, the iterative procedure f(T, xn) is said to be (T, I)-stable, if and only if limn→∞ εn = 0

implies that limn→∞ Iyn = p.

Our main result of this section is preceded by the following auxiliary lemma of Harder and Hicks
(1988b).

Lemma 4.2 (Harder and Hicks (1988b), Lemma 1).

If α is a real number such that 0 < |α| < 1 and {βi}∞i=0 is a sequence of real numbers such that
limn→∞ βi = 0, then limn→∞

∑n
i=0 α

n−iβi = 0.

Now we state and prove our main result of this section:

Theorem 4.3

Let (X, d) be a cone metric space, P a normal cone with normality constant K and let T, I : X → X

be mappings such that T (X) ⊂ I(X), I(X) is complete subset of X and such that condition
(3.2) is satisfied for all x, y ∈ X and some k1 ∈ [0, 1). Let z be a coincidence point of T
and I, that is, there exists p ∈ X such that Tz = Iz = p. Let x0 ∈ X and let the sequence
{Ixn}, generated by Ixn+1 = Txn, n = 0, 1, ..., converge to p. Let {Iyn} ⊂ X and defined
θn = d(Ixn, Ixn+1), εn = d(Tyn, Iyn+1), n = 0, 1, ... . Then

(1◦) d(p, Iyn+1) � d(p, Ixn+1) + 2k
∑n

i=0 k
n−iθi + kn+1d(Ix0, Iy0) +

∑n
i=0 k

n−iεi, where
k = max

{
k1,

k2
1−k2 ,

k3
1−k3

}
< 1.

(2◦) limn→∞ Iyn = p, if and only if limn→∞ εn = 0.
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Proof.

By the triangle inequality and the condition (3.2), we have

d(Txn, Tyn) � u,

where

u ∈ {k1d(Ixn, Iyn), k2[d(Ixn, Txn) + d(Iyn, Tyn)], k3[d(Ixn, Tyn) + d(Iyn, Txn)]}.

Now there arises four cases:
Case (i): If u = k1d(Ixn, Iyn), then

d(Txn, Tyn) � k1d(Ixn, Iyn) � k1[d(Txn−1, T yn−1) + d(Tyn−1, Iyn)]

= k1d(Txn−1, T yn−1) + k1εn−1 � k21d(Ixn−1, Iyn−1) + k1εn−1.

Therefore,

d(p, Iyn+1) � d(p, Ixn+1) + d(Ixn+1, T yn) + d(Tyn, Iyn+1)

� d(p, Ixn+1) + d(Txn, T yn) + εn

� d(p, Ixn+1) + k21d(Ixn−1, Iyn−1) + k1εn−1 + εn.

Case (ii): If u = k2[d(Ixn, Txn) + d(Iyn, T yn)], then

d(Txn, T yn) � k2[d(Ixn, Txn) + d(Iyn, Tyn)]

� k2[d(Ixn, Txn) + d(Iyn, Ixn) + d(Ixn, Txn) + d(Txn, T yn)].

Thus

d(Txn, Tyn) �
2k2

1− k2
d(Ixn, Txn) +

k2
1− k2

d(Ixn, Iyn).

Now,

d(p, Iyn+1) � d(p, Ixn+1) + d(Ixn+1, T yn) + d(Tyn, Iyn+1)

� d(p, Ixn+1) + d(Txn, T yn) + εn

� d(w, Ixn+1) +
2k2

1− k2
d(Igxn, Txn) +

k2
1− k2

d(Ixn, Iyn) + εn

= d(p, Ixn+1) +
2k2

1− k2
d(Ixn, Ixn+1) +

k2
1− k2

d(Ixn, Iyn) + εn.

Let us observe that

d(Ixn, Iyn) � d(Ixn, T yn−1) + d(Tyn−1, Iyn) = d(Txn−1, Tyn−1) + εn−1

� 2k2
1− k2

d(Ixn−1, Txn−1) +
k2

1− k2
d(Ixn−1, Iyn−1) + εn−1

=
2k2

1− k2
d(Ixn−1, Ixn) +

k2
1− k2

d(Ixn−1, Iyn−1) + εn−1,
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which implies that

d(p, Iyn+1) � d(p, Ixn+1) +
2k2

1− k2
d(Ixn, Ixn+1)

+
k2

1− k2

[ 2k2
1− k2

d(Ixn−1, Ixn) +
k2

1− k2
d(Ixn−1, Iyn−1) + εn−1

]
+ εn.

= d(p, Ixn+1) +
2k2

1− k2
d(Ixn, Ixn+1) + 2

( k2
1− k2

)2
d(Ixn−1, Ixn)

+
( k2
1− k2

)2
d(Ixn−1, Iyn−1) +

k2
1− k2

εn−1 + εn.

Case (iii): If u = k3[d(Ixn, T yn) + d(Iyn, Txn)], then

d(Txn, Tyn) � k3[d(Ixn, T yn) + d(Iyn, Txn)]

� k3[d(Ixn, Txn) + d(Txn, Tyn) + d(Iyn, Txn)]

Therefore,

d(Txn, T yn) �
k3

1− k3
[d(Ixn, Ixn+1) + d(Iyn, Txn)]

� k3
1− k3

[d(Ixn, Ixn+1) + d(Iyn, Ixn) + +d(Ixn, Txn)]

=
k3

1− k3
[d(Ixn, Ixn+1) + d(Iyn, Ixn) + +d(Ixn, Ixn+1)]

=
k3

1− k3
[2d(Ixn, Ixn+1) + d(Ixn, Iyn)].

Now,

d(p, Iyn+1) � d(p, Ixn+1) + d(Ixn+1, T yn) + d(Tyn, Iyn+1)

� d(p, Ixn+1) + d(Txn, T yn) + εn

� d(p, Ixn+1) +
k3

1− k3
[2d(Ixn, Ixn+1) + d(Ixn, Iyn)] + εn.

Let us observe that

d(Ixn, Iyn) � d(Ixn, T yn−1) + d(Tyn−1, Iyn) = d(Txn−1, Tyn−1) + εn−1

� k3
1− k3

[2d(Ixn−1, Ixn) + d(Ixn−1, Iyn−1)] + εn−1,

which implies that

d(p, Iyn+1) � d(p, Ixn+1) +
k3

1− k3

[
2d(Ixn, Ixn+1)

+
{ k3
1− k3

[2d(Ixn−1, Ixn) + d(Ixn−1, Iyn−1)] + εn−1

}]
+ εn

= d(p, Ixn+1) +
2k3

1− k3
d(Ixn, Ixn+1) + 2

( k3
1− k3

)2
d(Ixn−1, Ixn)

+
( k3
1− k3

)2
d(Ixn−1, Iyn−1) +

k3
1− k3

εn−1 + εn.

Thus, for all n ∈ N, we have

d(p, Iyn+1) � d(w, Ixn+1) + 2kd(Ixn, Ixn+1) + 2k2d(Ixn−1, Ixn)

+ k2d(Ixn−1, Iyn−1) + kεn−1 + εn,
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where k = max
{
k1,

k2
1−k2 ,

k3
1−k3

}
. Clearly, k ∈ [0, 1). Continuing this process (n -1) times we obtain

(1◦).

To prove (2◦), we first suppose that limn→∞ Iyn = p. By the triangle inequality, we have

εn = d(Tyn, Iyn+1) � d(Tyn, Txn) + d(Txn, Iyn+1)

= d(Tyn, Txn) + d(Ixn+1, Iyn+1)

� kd(Iyn, Ixn) + d(Ixn+1, Iyn+1),

Hence

‖εn‖ ≤ K[k‖d(Iyn, Ixn)‖+ ‖d(Ixn+1, Iyn+1)‖].

Since Ixn → p and Iyn → p as n → ∞, limn→∞ d(Iyn, Ixn) = 0. Consequently, we obtain
limn→∞ εn = 0.

Conversely, suppose that limn→∞ εn = 0. By (1◦) and (2.1), we obtain

‖d(p, Iyn+1)‖ ≤K[‖d(p, Ixn+1)‖+ 2k

n∑
i=0

kn−i‖θi‖

+ kn+1‖d(Ix0, Iy0)‖+
n∑
i=0

kn−i‖εi‖],

for each n ∈ N. Since limn→∞ Ixn = p, we find that limn→∞ θn = 0. As k ∈ [0, 1) we have, by
Lemma 4.2, that limn→∞ Iyn = p. This proves (2◦).

Our next result deals with stability of J-iterative procedure for mappings satisfying Jungck’s I-
contraction.

Theorem 4.4

Let (X, d) be a cone metric space, P a normal cone with normal constant K and let T, I : X → X

be mappings such that T (X) ⊂ I(X), I(X) is complete subset of X and such that

d(Tx, Ty) � kd(Ix, Iy), (4.1)

for all x, y ∈ X and some k ∈ [0, 1). Let z be a coincidence point of T and I, that is, there
exists p ∈ X such that Tz = Iz = p. Let x0 ∈ X and let the sequence {Ixn}, generated by
Ixn+1 = Txn, n = 0, 1, ..., converge to p. Let {Iyn} ⊂ X and defined εn = d(Tyn, Iyn+1), n = 0, 1,

... Then,

(1
′
) d(p, Iyn+1) ≤ d(w, Ixn+1) + kn+1d(Ix0, Iy0) +

∑∞
i=0 k

n−iεi,
(2

′
) limn→∞ Iyn = p, if and only if limn→∞ εn = 0.
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Proof.

A proper blend of proof of Theorem 4.3 establishes this result.

Considering metric space as a special case of cone metric space and I = id, the identity map of X,
we obtain as corollary of Theorem 4.4 the following classical theorem of stability due to Ostrowski
(1967):

Corollary 4.5

Let (X, d) be a complete metric space, and let T : X → X be a Banach contraction with contraction
constant k; i.e.,

d(Tx, Ty) ≤ kd(x, y), (4.2)

for all x, y ∈ X and some k ∈ [0, 1). Let p be a fixed point of T . Let x0 ∈ X and let the sequence
{xn}, generated by xn+1 = Txn, n = 0, 1, ... . Suppose that {yn} a sequence in X and defined
εn = d(Tyn, yn+1), n = 0, 1, ... . Then

(1
′′
) d(p, yn+1) ≤ d(p, xn+1) + kn+1d(x0, y0) +

∑∞
i=0 k

n−iεi,
(2

′′
) limn→∞ yn = p, if and only if limn→∞ εn = 0.

Remark 4.6

Our Corollary 4.5. in fact restate the classical stability theorem (Ostrowski (1967)).

5. Conclusion

Last decade witnessed growing interest in fixed point and coincidence point theory in cone metric
spaces which was introduced by Huang and Zhang (2007). Rezapour and Hamlbarani (2008) gen-
eralized theorems of Huang and Zhang (2007) and proved some new fixed point theorems in cone
metric spaces. In this work, we proved new coincidence point theorems in cone metric spaces (both
for normal and non-normal case) and initiated investigations of stability of Jungck-type iterative
procedures for coincidence equations in cone metric spaces. Results obtained in this paper gen-
eralize and extend results of Huang-Zhang (2007), Rezapour-Hamlbarani (2008), Abbas-Jungck
(2008) and the classical theorem of stability due to Ostrowski (1967), respectively. In future we
plan to further extend these results to multivalued case and fuzzy b-metric spaces.
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