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Abstract 

 
This work concerns the solution of non-symmetric, sparse linear systems with multiple right 

hand sides by iterative methods. Herein a global version of the range restricted generalized 

minimal residual method (RRGMRES) is proposed for solving this sort of problems. Numerical 

results confirm that this new algorithm is applicable. 
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1. Introduction 

 
There are many applications for the solution of several sparse linear system of equations 

 
( ) ( ) , 1,..., ,i iAx b i s     (1) 

 

with the same n n matrix ,A  but s  different right hand sides ( ) , 1,..., .ib i s  If all the right 

hand sides are available simultaneously, these s  linear systems can be combined in a block form 

as: 

 

,AX B      (2) 
 

where  

 

Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 

 

Vol. 13, Issue 2 (December  2018),  pp. 985 - 996 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

mailto:mostafa.eslami@umz.ac.ir
http://pvamu.edu/aam


986  Mostafa Eslami 

 (1) ( ),..., sX x x  and (1) ( ),..., sB b b . 

 

Several iterative methods have been proposed for finding the solution of such a problem. There 

are some block iterative methods like the block conjugate gradient (Bl-CG) proposed by O’Leary 

(1980), and its variants Nikishin and Yeremin (1995), Saad (1987), to solve (2) when the matrix 

A is symmetric and positive definite. In last years, block Krylov subspace methods have been 

proposed for nonsymmetric problems. One of the most important methods for this aim is the 

block GMRES (BGMRES) Simoncini and. Gallopoulos (1995, 1996). Similarly, several block 

iterative methods like block quasi minimal residual (BQMR) as well as block BiCGSTAB have 

been developed for nonsymmetric matrices Chan and  Wang (1997), Cullum and Donath (1974), 

Freund and Malhotra (1997), Golub and Underwood (1977), Guennouni et al. (2003). The main 

goals of these methods are not only to reach the solution faster than solving s separate linear 

system of equations, but also to reduce the required computations. However, in BGMRES, block 

Arnoldi process is applied to generate an orthogonal basis that still requires higher computation 

and storage than the new methods.  

 

In this context, Jbilou et al. (1999) proposed global GMRES (Gl-GMRES) method with less 

arithmetic computation and storage requirement. Surprisingly, in this case, a real hessenberg 

least square problem with low dimension must be solved whilst in BGMRES, the corresponding 

least square matrix, which is used to reduce dimension ,A  is a block hessenberg matrix. 

Therefore, solving a least square problem with real elements is much easier than such problem 

with block matrices as its elements. After proposing Gl-GMRES, some researchers have 

developed this method in different aspects Bellalij et al. (1991), Lin (2005). However, GMRES 

Saad and Schultz (1986), is a popular iterative method for solving nonsymmetric linear systems 

with variety of implementations such as simpler GMRES Walker (1994), GMRES with 

householder implementation Walker (1988), range restricted GMRES Calvetti et al. (2000, 2001) 

as well as generalization and modification GMRES methods Chen et al. (1999), that each 

implementation is practical for a set of problems. Among these variants, range restricted 

GMRES (RRGMRES) has been introduced for ill-posed linear system of equations. Here, this 

version of GMRES is considered for solving (2). 

 

The outline of this paper is as follows: In Section 2, global GMRES is described briefly. In 

Section 3, a new global GMRES is explained with some explanations. Numerical experiment is 

in the next Section.  

 

Throughout this paper, the following notations are used. Let 
n sE  to denote the vector 

space, on the field  of matrices with dimension .n s  For two vectors X and  Y  in ,E and the 

inner product , ( )T

F
X Y tr X Y= , where ( )tr Z  is the trace of square matrix Z  and 

TX  is the 

transpose of the matrix X , are defined. The associated norm is the well-known Frobenius norm 

denoted by . .
F

 For a matrix ,V E  the Krylov subspace ( ),kK A V  is defined by 

 

     ( )  2 1, , , ,..., k

kK A V span V AV A V A V−= .  
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A set of vectors is said to be F-orthonormal if it is orthonormal with respect to the scalar 

product .,.
F

. 

 

1. Gl-GMRES for solving matrix equations 

 
Gl-GMRES algorithm for multiple right hand side problems (2) was recently proposed by Jbilou 

et al. (1999). Here, let us recall a brief description of Gl-GMRES. At first step, this method needs 

to generate a set of F-orthonormal vectors by the global Arnoldi orthogonalization procedure to 

project the square matrix A  into an ( 1)k k+  upper hessenberg matrix. So, the algorithm of 

global Arnoldi process, required for this aim, is written below: 

 

Algorithm 2.1. Global Arnoldi process 

 

1 11.  1.

2.   1, ,

F
Choose V E with V

For j k do

 =

= 
 

1

, 1

1 1 ,

,

  1, ,

( ),

,

j j

T

i j j i

j j i j i

V AV

For i j do

h tr V V

V V h V

End

+

+

+ +

=

= 

=

= −

 

1, 1

1 1 1 ,

,

/ ,

.

j j j F

j j j j

h V

V V h

End

+ +

+ + +

=

=  

 

In this algorithm, the matrices , 1,..., , 1iV E i k k = +  are F-orthonormal while the elements 

,i jh  are real numbers. This algorithm will stagnate at step ,j  ( )j k , if 1,j jh +   

computationally. Here and throughout this paper 
kW is denoted for the n ks matrix 

1 , ,k kW V V =   , kH  is the  ( 1)k k+   upper Hessenberg matrix with nonzero entries ,i jh  

and . , jH will show the jth column of .kH  Notice that in block GMRES, the corresponding 

block hessenberg matrix kH is of dimension ( 1)k s ks+   whilst in global GMRES this matrix is 

( 1) .k k+   Then BGMRES needs much more storage and computation requirements than Gl-

GMRES for generating an orthonormal basis set of vectors for ( )1,kK A V . To know better about 

global Arnoldi algorithm and its properties, the following definitions and propositions are useful. 

 

Definition 2.2. 

 

The grade of an n x s matrix V E  is the degree of the nonzero monic polynomial P  with 

lowest degree that ( ) 0P A V = . 
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Definition 2.3. 

 

 Given 1 , , k   =    in kR  the symbol * denotes the following 

 

1

* ,
k

k i i

i

W V 
=

=  (3) 

 

and similarly 

 

. ,1 . ,2 . ,* * , * ,..., *k k k k k kW H W H W H W H =   .     (4) 

 

From global Arnoldi process the following properties are also concluded. 

 

 

Proposition 2.4. 

 

 If the global Arnoldi process does not breakdown until kth iterate, then the set  1 , , kV V is an 

F-orthonormal basis for the Krylov subspace ( )1,kK A V . 

 

 

Proposition 2.5. 

 

 The global Arnoldi process will stagnate at step k  if the grade of 
1V  is .k  

 

The proofs of these two propositions are similar to those for the Arnoldi algorithm applied on a 

linear system with single right side Saad (1995, 1986). 

 

Proposition 2.6. 

 

 For the matrix 
kW and a real vector  , we have  

 

2
*k F

W  = .     (5) 

 

 

Proof:  

 

From Definition 2.2, 
1

* ,
k

k i i

i

W V 
=

=  and the fact that the matrices , 1,...,iV i k=  are F-

orthonormal, i.e., ,,i j i jF
V V = , we have: 
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2 22

2
1 1 1

* ,
k k k

k i i i i iF
i i iF

W V V    
= = =

= = =   .                                                       

 
Proposition 2.7. 

 

 From the global Arnoldi algorithm, the following reduction relation is held 

 

1 * ,k k kAW W H+=     (6) 

  

where 
kW  and kH  be as defined before and  1 1k k kW W V+ += . 

 

Proof:  

 

Refer to Jbilou et al. (1999). 

 

 

The global GMRES algorithm is summarized as follows. 

 

 

Algorithm 2.8. Global GMRES  

 

1.  Choose 
0X , compute 

0 0R B A X= − , 0R =  and set 
1 0 /V R = . 

2.  For 1, ,j k= run algorithm 1 with 
1V  to build the F-orthonormal basis set  1 1, , kV V + . 

3.  Compute 
0 *k kX X W y= +  where 

1arg min
k

k
y

y e H y


= − . 

 

In global GMRES, the iterate ( )0 0 0,k kX X Z X K A R= +  +  is computed so that the vector Z  

minimizes the residual Frobenius norm over ( )0,kK A R , i.e. 

 

0
0 0

( , )
min

k
k F FF Z K A R

R R AZ R AZ


= − = − .    (7) 

 

By multiplying 
1kW +

 into 0kR R AZ= −  with respect to product *, we have  

 

        
1 1 0 1

1

* *

,

k k k k

k k

W R W R W AZ

e H W y

+ + += −

= −
 

 

because of  1 0 0 1* ,k F
W R R e+ =   and (6) where ( ) 1

1 1,0,...,0
T ke +=  . 

 

So, in global GMRES, this minimizing problem is transferred into an upper Hessenberg least 

square problem 
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1 2
min

k k
y

e H y


− .    (8) 

 

1 2
min

kk kF y
R e H y


= − .    (9) 

 

For solving (8), Givens rotations are mainly used to transform (8) into an upper triangular linear 

system of equations of order k .  

 

 

2. Global RRGMRES for multiple right hand side equations 

 
The Range Restricted GMRES (RRGMRES) method proposed by Calvetti et al. (2000, 2001), is 

a variant of GMRES that has some advantages over standard GMRES. RRGMRES uses the 

Krylov subspace ( ) ( )0 0, ,k kK A Ar AK A r= for the problem Ax b=  with one right side vector 

.nb   In this method, the Arnoldi decomposition algorithm is started with 1 0 0/v Ar Ar=  

instead of 1 0 0/v r r= . Therefore the computed solution will be restricted to the range of ,A  i.e. 

( )A , because ( )0, ( )kK A A r A  and this is the reason it is named as range restricted 

GMRES. 

 

In this paper, the RRGMRES technique is applied for linear systems of equations with multiple 

right hand sides and this method will be the global RRGMRES (Gl-RRGMRES). Let 
0X   be 

the initial matrix guess and 
0 0R B AX= −  is the corresponding residual. Here, the global 

Arnoldi process is started with 1 0 0/
F

V AR AR=  to generate the F-orthonormal basis set 

 1 , , kV V  for the new Krylov subspace
0( , )kK A AR . The iterates ,kX  1k   computed by 

Gl-RRGMRES satisfy 

 

0 0 0
0

( , ) ( , )
min min ,

k k
k

X X K A AR Z K A AR
B AX B AX R AZ

 + 
− = − = −     (10) 

 

where  

 

 2

0 0 0 0( , ) , ,..., k

kK A AR span AR A R A R= and 
0kX X Z= + .      

 

Global RRGMRES is relatively similar to global GMRES in many steps. Therefore, the Arnlodi 

reduction relation 1k k kAW W H+=  is held for 

 

       1 , ,k kW V V =   ,  1 1 ,k k kW W V+ +=  

 

and the ( 1)k k+   coefficients of the Hessenberg matrix ( ),k i jH h= .  
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Now, for an arbitrary matrix 
0X X Z= +  where ( )0,kZ K A AR , the matrix 

( )0,kZ K A AR  is determined by the following linear combination 

 

1

* ,
k

i i k

i

Z y V W y
=

= =     (11) 

 

for some vector ,ky   because  1 , , kV V  is a basis for ( )0,kK A AR . Thus, by using (6), 

the following relation is obtained 

 

( ) ( )0 0 0 1* *k k kR AZ R AW y R W H y+− = − = − .    (12) 

 

To reach to RRGMRES condition for projecting goal, we multiply both sides of (12) by the 

( 1)n k s +  matrix 1 1 1, , ,k k kW V V V+ +
 =    using the product *.  

Let: 

 

1

12

1

1

(1) ( )

(2) ( )
*

( 1) ( )

T

T

k

k

T

k

u tr V R

u tr V R
W R u

u k tr V R

+

+

+

  
  
  = = = 
  
    +   

.    (13) 

 

 

So, from (5),  (12) and (13), the following relation is determined: 

 

( )1 1 0 0* *k k kW R W R AZ u H y+ += − = − .    (14) 

 

0min
kk kF y

R u H y


= − .    (15) 

 

To compute the iterate 
kX , 1 ,k  by global RRGMRES,  the residual norm has to be 

minimized over 
0( , )kK A AR . Thus, the corresponding residual F-norm is 

 

    
( )0 0

0 2,
min ,

k
k k kF F FX X K A AR

R B AX B AX u H y
 +

= − = − = −     

 

where  

 

    
0y=argmin

k
k

y

u H y


− .  

 

From the above, the following theorem is concluded. 
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Theorem 3.1. 

 

 In Gl-RRGMRES, the optimum iterative solution 0kX X Z= + , for 1k  , satisfies     

( )0 0,k kX X K A AR= + , where: 

 

   0 0 2
min ,

kk kF F y
R R AZ u H y


= − = −   

 

and 

 

    
0 *k kX X W y= + , where 

0y=argmin
k

k
y

u H y


− . 

 

 

Now, the global RRGMRES algorithm is as follows: 

 

Algorithm 3.2. Global RRGMRES  

 

1.  Choose 
0X , compute 

0 0R B A X= − , 0AR =  and set 
1 0 /V AR = . 

2.  For 1, ,j k= run algorithm 1 with 
1V  to build the basis set  1 2 1, , , kV V V + . 

3.  Compute 
0 *k k kX X W y= +  where  

 

    
0arg min ,

k
k k

y

y u H y


= −  and 
0 1 *k ou W R+= . 

 

Suppose matrix A  is (nearly) singular. The following theorem about Gl-RRGMRES is derived.  

 

Theorem 3.3. 

 

 Apply Gl-RRGMRES on (2) until breakdown at step .k  If rank( )= 1A k −  and 

1 0dim ( , ) 1kAK A AR k− = − , then global RRGMRES produces a least square solution of (2). 

 

Proof:  

 

By substituting .
F

 and .,.
F

 instead of ordinary vector product 
2

. and , Tx y x y=  into 

the proof of theorem A2 in Cao and  Wang (2002), it is proved.     

              

 

3. Numerical experiments 

 
The aim of this Section is to illustrate the convergence performance of global RRGMRES for 

some linear system of equations with multiple right hand sides. All codes were written in Matlab 

and the experiments are done on 2.2 GHz personal computer with 1GB of RAM.  

http://academic.research.microsoft.com/Author/53641751/zhi-hao-cao
http://academic.research.microsoft.com/Author/52538889/mei-wang
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In all experiments, the right hand side matrix B  is chosen so that the random matrix X  of 

dimension n s with values uniformly distributed in the interval  5,5− , determined by the 

Matlab code 5 ( , )X randn n s=  , is the solution of .AX B=  The initial guess 
0X  is taken to be 

0 ( , )X zeros n s= . The convergence tolerance 1010 −=  is considered with the stopping criterion 

k F
R  . For each example, the figures show ( )log10 k F

R  versus the number of iterations. 

 

Example 4.1. 

 

The matrix A is obtained by first discretizing the Poisson equation: 

 

    ( ) ( )
2 2

2 2
, ,u x y f x y

x y

  
+ = 

  
 for ( )    , 0,1 0,1 ,x y  =   

 

with Neumann boundary conditions: 

 

     ( ) ( ), ,u x y x y
x




=


 on  , 

 

on a uniform grid of mesh size 1/h M=  via central differences, and then by taking the 

unknowns in the red-black ordering. This matrix is explicitly written down in Saberi Najafi and 

Zareamoghaddam (2008), Sidi (2001) and it was considered therein for testing other GMRES 

implementations.  

 

In our numerical experiments for this exam, we took 39M =  which the corresponding square 

matrix A  is in order of 1600 . The matrix 5 (1600,20)X randn=   is chosen as the exact solution 

of (1) and the restart number is 50.k =   

 
Figure 1. Graph of the residual for Example 4.1 with A ℝ16001600 and X ,B ℝ160020 
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Figure 1, shows that both implementations perform well in the particular case of 20 different 

right hand sides. We know that for the problems with a single hand side the convergence speed 

of standard GMRES is a little faster than RRGMRES and this issue is repeated here too. 

 

 

Example 4.2. 

 

 In this example, matrix A has the following structure: 

 

    
1000 1000

1 0 0.5

1 0

0.5

0

1 1

A 

 
 
 
 = 
 
 
 
 

. 

 

This matrix is approximately upper triangular. The right hand side matrix B is chosen so that 

5 (1000,30)X randn=   be the exact solution of (2).  Figure 2, shows the behavior of residual 

norms of global GMRES implementations.  

 

In this example, the restart number is 30.k =  It can be seen from the graph that global 

RRGMRES reaches to the solution after 3  iterations similarly to the results of global GMRES. It 

is interesting that both of these methods solve a system of linear equations with 30  different 

right hand side vectors by the restart number 30k = (e.g. Gl-GMRES (30)) just after 3 outer 

iterates that shows these methods are powerful for solving such problems.  

 
Figure 2. Graph of the residual for Example 4.2 with A ℝ10001000 and X ,B ℝ100030 
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RRGMRES is a good iterative solver for ill-posed problems. The next problem, which has a 

singular square matrix A  for even integers, is selected from Brown (1991). 

 

 

4. Conclusion 

 
RRGMRES is a variant of GMRES for solving linear equations with single right side which 

looks for the solution through the range of square matrix .A  In this paper, a global RRGMRES 

was proposed for solving linear system of equations with multiple right hand sides. Gl-

RRGMRES is not always as fast as Gl-GMRES, however performs better when the square 

matrix is ill-posed or singular. 
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