
Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 13, Issue 2 (December 2018), pp. 975 – 984

Linear Stability Analysis with Solution Patterns due to Varying Thermal
Diffusivity for a Convective Flow in a Porous Medium

Dambaru Bhatta

School of Mathematical and Statistical Sciences
The University of Texas-Rio Grande Valley

Edinburg, TX, USA
dambaru.bhatta@utrgv.edu

Received: July 17, 2018; Accepted: October 30, 2018

Abstract

Here we investigate the effect of the vertical rate of change in thermal diffusivity due to a hydro-
thermal convective flow in a horizontal porous medium. The continuity equation, the heat equa-
tion and the momentum-Darcy equation constitute the governing system for the flow in a porous
medium. Assuming a vertically varying basic state, we derive the linear system and from this lin-
ear system, we compute the critical Rayleigh and wave numbers. Using fourth-order Runge-Kutta
and shooting methods, we obtain the marginal stability curves and linear solutions to analyze the
solution pattern for different diffusivity parameters.

Keywords: Thermal Diffusivity; Marginal Stability; Porous Media; Critical Rayleigh
Number; Hydro-thermal; Convective Flow

MSC 2010 No.: 35Q35, 76E06, 76M25, 76S99, 80A20

1. Introduction

Study of hydrodynamic stability was carried by many scientists including Helmholtz, Kelvin,
Rayleigh and Reynolds in the nineteenth century because of its practical importance. Various case
studies on hydrodynamic stability has been presented by Chandrasekhar (1981). The Landau equa-
tion has been derived for various cases and the dependence of Landau constant on stability has been
studied by Drazin and Reid (2004). Stability analysis of natural convection in porous cavities was
carried out by Alves et al. (2001) by using integral transforms. Riahi (1989) carried out nonlin-
ear stability analysis in a porous layer with permeable boundaries. The case of a continuous finite
bandwidth of convection modes in a horizontal layer was analyzed by Riahi (1996).
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A porous medium is characterized by its porosity and an important property of the medium is
permeability. Darcy’s law for porous media, which is analogous to the Navier-Stokes equation, is
taken into account in the momentum equation,. In natural porous media the distribution of voids
or pores with respect to shape and size is not regular. Heat transfer through a porous medium
is a very common phenomenon. Fluid tries to expand when heated causing a density inversion
to follow, if the heating is strong, a circulatory motion occurs, which is called convection. This
convection phenomenon in fluid layer is well-studied and occurs in various natural settings and in
many industrial applications.

Theoretical and experimental treatments and research on convection in porous media have been
studied by various authors through many research articles (Nield and Bejan 2017, Vafai 2005).
Rubin (1981) investigated the onset of thermohaline convection in a porous medium with vary-
ing hydraulic resistivity. Vafai (1984) investigated wall effects due to variable porosity. Variable
porosity and thermal dispersion effects due to natural convection in an inclined porous cavity were
studied by Hsiao (1998). Kim and Vafai (1989) obtained numerical solution based on the simi-
larity transformations and an analytical solutions using the method of matched asymptotic expan-
sions. Riahi (1989) investigated nonlinear convection in a porous layer with permeable boundaries.
Modal package convection for a porous medium with boundary imperfections was analyzed by Ri-
ahi (1996). The effect of variable permeability in porous media was analyzed analytically and
numerically by Rees and Pop (2000). Hassanien and Omer (2005) studied the effect of variable
permeability.

A model for an aquifer which can be treated as porous media was presented by Fowler (1997).
Rubin (1982) used Galerkin method to analyze the effects of hydraulic resistivity and thermal
diffusivity on stability in a nonhomogeneous aquifer. Bhatta and Riahi (2017) investigated weakly
nonlinear hydro-thermal two-dimensional convective flow in a horizontal aquifer by treating it as
porous medium. They investigate the effects of small linear vertical variations in the permeability
and thermal conductivity. Convective flows, in a horizontal dendritic porous layer (also known as
mushy layer) during alloy solidification, are known to produce undesirable effects in the final form
of the alloy. Hydro-thermal convective solutions for an aquifer system heated from below was
studied by Bhatta (2013). Study on oscillatory modes of nonlinear compositional convection in
mushy layers was carried out by Riahi (2009). Muddamallappa et al. (2009) used a modified mushy
layer model based on the standard near eutectic approximation. They used linear stability analysis
and calculated critical Rayleigh number for the cases of both constant and variable permeability.
However, the issues of nonlinear effects and transition effects on the chimney formation did not
feature in their investigation. Linear stability analysis for convective flow in a mushy layer with
non-uniform magnetic field were carried out Muddamallappa et al. (2010). An active (with varying
permeability) mushy layer with permeable mush-liquid interface was analyzed by Bhatta et al.
(2010) using weakly nonlinear procedure.

In this work, we analyze the linear stability and solution patterns of the governing system due to
linear variation in thermal diffusivity in the vertical direction for a convective flow in a horizontal
porous medium.
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2. Mathematical Formulation

Equations Governing the System

The nondimensional system can be expressed as (Nield & Bejan, Riahi, Rubin, Fowler)

∇ · −→q = 0, (1)
−→q −Rθ k̂ +∇p = 0, (2)

∂θ

∂t
+−→q · ∇θ = ∇ · (β∇θ) . (3)

Here −→q , θ, R, p, β, t and k̂, respectively, represent the velocity, temperature, Rayleigh number,
pressure, thermal diffusivity, time and unit vector in the upward vertical direction. The governing
system consists of continuity equation for conservation of mass, Darcy equation for conservation
of momentum and heat equation for conservation of energy. For the steady state solution, we have
∂θ
∂t = 0 and all dependent variables ( −→q , θ, p ) are functions of x, y, z.

We assume a linear variation in diffusivity β in the vertical z-direction as

β = 1 + β0z. (4)

Here β0 is a constant. Here β0 represents the vertrical rate of change in thermal diffusivity.

The boundary conditions are

θ = 1, qz = 0 at z = 0, (5)
θ = 0, qz = 0 at z = 1, (6)

where qz is the vertical z-component of −→q .

3. Solution Procedure

We perturb the system given by (1) - (3) as follows

θ(x, y, z) = θb(z) + εΘ(x, y, z),
−→q (x, y, z) = −→q b + ε

−→
Q(x, y, z), (7)

p(x, y, z) = pb(z) + εP (x, y, z),

where θb,−→q b, pb are solutions to the basic steady state system (system with no flow) and Θ,
−→
Q, P

are perturbed solutions. The perturbation parameter is given by ε = (R−Rc) /R1 > 0 i.e., R =

R+ εR1. Here Rc is the critical Rayleigh number and R1 is the nonlinear contribution to R beyond
the critical number.

3.1. Basic State System

The basic state system is the system with no flow. Using the equations given by (7) in (1) through
(3) and by comparing the coefficients of ε0, we have
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β
d2θb
dz2

+

(
dβ

dz

)(
dθb
dz

)
= 0,

dpb
dz
−Rcθb = 0, (8)

−→q b =
−→
0 ,

with boundary conditions θb = 1, pb = 0 at z = 0 and θb = 0 at z = 1.

Basic State Solutions

Solving the basic state system (8), we obtain the solutions as

θb(z) = 1− ln (1 + β0z)

ln (1 + β0)
, (9)

pb(z) = Rc

[
z − 1 + β0z

β0 ln (1 + β0)
{ln (1 + β0z)− 1}

]
, (10)

−→u b =
−→
0 . (11)

3.2. Perturbed System

The perturbed system can be expressed as

∇ ·
−→
Q = 0, (12)

−→
Q −RcΘk̂ −R1θbk̂ +∇P = εR1Θk̂, (13)
∇2Θ−

−→
Q · ∇θb = ε

−→
Q · ∇Θ, (14)

with the boundary conditions

Θ = Qw = 0 at z = 0, 1, (15)

where Qw is the vertical z-component of
−→
Q .

3.2.1. Elimination of Pressure

To eliminate the pressure from Equation (13), we use poloidal (P ) and toroidal (T ) representa-
tions of

−→
Q (since ∇ ·

−→
Q = 0 , Chandrasekhar) which is given by

−→
Q = (Qu, Qv, Qw) =

−→
P φ+

−→
T ψ, (16)

with
−→
P = ∇×∇× k̂,

−→
T = ∇× k̂, (17)

Thus, we have

Qw = −42φ, where 42 =
∂2

∂x2
+

∂2

∂y2
. (18)
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After elimination of pressure by taking the vertical component of the double curl of the equation
(13), the perturbed system becomes:

∇2Qw −Rc (42Θ) = εR1 (42Θ) , (19)

β∇2Θ +
dβ

dz
(DΘ)−Qw

dθb
dz

= ε
−→
Q · ∇Θ, (20)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, D =

∂

∂z
.

The boundary conditions are

Θ = Qw = 0 at z = 0, 1. (21)

Now, expressing Θ(x, y, z) and Qw(x, y, z) as

Θ(x, y, z) = Θ0(x, y, z) + εΘ1(x, y, z) + ε2Θ2(x, y, z) + . . . , (22)
Qw(x, y, z) = Qw0(x, y, z) + εQw1(x, y, z) + ε2Qw2(x, y, z) + . . . , (23)

and using the equations (19) and (20), we obtain different order systems, namely, linear, first order,
etc.

4. Linear System

The linear system can be expressed by the following equations:

∇2Qw0 −Rc (42Θ0) = 0, (24)

β∇2Θ0 +
dβ

dz
(DΘ0)−Qw0

dθb
dz

= 0. (25)

The boundary conditions are

Θ0 = Qw0 = 0 at z = 0, 1. (26)

4.1. 2-D Solutions: Normal Mode Approach

Using normal mode approach, we consider the following form for linear solutions for the two
dimensional case,

h0 (x, z) = ĥ0(z) e
iαx, (27)

which yields

∇2h0 = eiαx
(
d2

dz2
− α2

)
ĥ0(z). (28)

Using (27) in the linear system (24)-(25), we have(
d2

dz2
− α2

)
Q̂w0 + α2RcΘ̂0 = 0, (29)

β

(
d2

dz2
− α2

)
Θ̂0 + β0

dΘ̂0

dz
− Q̂w0

dθb
dz

= 0. (30)
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The boundary conditions are

Θ̂0 = Q̂w0 = 0 at z = 0, 1. (31)

5. Numerical Results

We use fourth order Runge Kutta method together with shooing method to solve the ODE system.
The critical wave and Rayleigh numbers obtained numerically for different values of β0 are shown
in Table1.

Table 1. Critical wave and Rayleigh numbers

β0 -0.8 -0.3 0.0 0.7 1.2
αc 3.25534 3.14729 3.14159 3.15431 3.16939
Rc 21.783967 33.382175 39.478427 52.693903 61.652823

Figure 1 presents the marginal stability curves at different values of β0.

1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

100

120

140

160

R
ay

le
ig

h 
N

um
be

r

0
 = 1.2

0
 = 0.7

0
 = 0.0

0
 = -0.3

0
 = -0.8

Figure 1. Marginal Stability Curves

From the marginal stability curves, it is observed that stability region is effected by the values of
the vertrical rate of change in thermal diffusivity, β0. As β0 increases, unstable region decreases.
Higher diffusivity parameter yields higher stability.

For different values of γ0, the linear solutions for the vertical component of the velocity in the
z-direction,Q̂w0(z) are displayed in the Figure 2.

To investigate the behavior of the solution in the middle of the layer, we present two tables, Table-
2 and Table-3. The linear solutions for the vertical component of the velocity, Q̂w0(z), for β0 =

0.0, 1.2 and -0.8 somewhere in the middle of layer, i.e., from z = 0.43 to z = 0.62 are presented in
Table 2.

From Table 2, it is noticed that for β0 = 0.0, the velocity component has a maximum value of
0.3183099 at z = 0.5, i.e., at the middle of the layer, and velocity component is symmetric about
the middle of the layer. Results are not symmetric for other values of z. For β0 = 1.2, the maximum
value of the velocity component, which is 0.2719879, is attained at z = 0.45, i.e., it shifts downward
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Figure 2. Linear Solutions Q̂w0(z) for various γ0

in the layer. For β0 = −0.8, the maximum value of the velocity component, which is 0.4269370, is
attained at z = 0.59, i.e., it moves upward. For different values of β0,

Table 2. Linear Solutions Q̂w0(z) for various β0

z β0 = 0.0 β0 = 1.2 β0 = −0.8

0.62 0.2959570 0.2377564 0.4250248
0.61 0.2994916 0.2415681 0.4261251
0.60 0.3027306 0.2451810 0.4267589
0.59 0.3056709 0.2485894 0.4269370
0.58 0.3083095 0.2517882 0.4266706
0.57 0.3106439 0.2547718 0.4259712
0.56 0.3126717 0.2575350 0.4248501
0.55 0.3143909 0.2600726 0.4233188
0.54 0.3157999 0.2623796 0.4213891
0.53 0.3168972 0.2644509 0.4190725
0.52 0.3176817 0.2662818 0.4163808
0.51 0.3181528 0.2678675 0.4133255
0.50 0.3183099 0.2692034 0.4099183
0.49 0.3181528 0.2702851 0.4061708
0.48 0.3176817 0.2711084 0.4020943
0.47 0.3168972 0.2716692 0.3977003
0.46 0.3157999 0.2719636 0.3930001
0.45 0.3143909 0.2719879 0.3880048
0.44 0.3126717 0.2717387 0.3827254
0.43 0.3106439 0.2712128 0.3771726

Figure 3 shows the linear solutions for the temperature in the z-direction, Θ̂0(z).

Table 3 presents the linear solutions for the temperature, Θ̂0(z), for β0 = 0.0, 1.2 and -0.8 some-
where in the middle of layer, i.e., from z = 0.38 to z = 0.72. From Table 3, it is noticed that for
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Figure 3. Linear Solutions Θ̂0(z) for various β0

Table 3. Linear Solutions Θ̂0(z) for various β0

z β0 = 0.0 β0 = 1.2 β0 = −0.8

0.72 0.0124251 0.0052912 0.0419984
0.71 0.0127419 0.0054713 0.0420511
0.70 0.0130460 0.0056493 0.0420435
0.69 0.0133373 0.0058252 0.0419788
0.68 0.0136154 0.0059987 0.0418604
0.67 0.0138801 0.0061696 0.0416913
0.66 0.0141311 0.0063377 0.0414745
0.65 0.0143682 0.0065029 0.0412130
0.64 0.0145910 0.0066649 0.0409095
0.63 0.0147995 0.0068235 0.0405667
0.62 0.0149934 0.0069784 0.0401871
0.61 0.0151724 0.0071296 0.0397733
0.60 0.0153365 0.0072767 0.0393275
0.59 0.0154855 0.0074194 0.0388521
0.58 0.0156192 0.0075577 0.0383491
0.57 0.0157374 0.0076912 0.0378206
0.56 0.0158402 0.0078197 0.0372686
0.55 0.0159272 0.0079429 0.0366949
0.54 0.0159986 0.0080606 0.0361013
0.53 0.0160542 0.0081725 0.0354896
0.52 0.0160940 0.0082784 0.0348613
0.51 0.0161178 0.0083780 0.0342180
0.50 0.0161258 0.0084710 0.0335611
0.49 0.0161178 0.0085573 0.0328920
0.48 0.0160940 0.0086364 0.0322120
0.47 0.0160542 0.0087082 0.0315223
0.46 0.0159986 0.0087723 0.0308242
0.45 0.0159272 0.0088285 0.0301187
0.44 0.0158402 0.0088766 0.0294069
0.43 0.0157374 0.0089162 0.0286898
0.42 0.0156192 0.0089471 0.0279683
0.41 0.0154855 0.0089689 0.0272433
0.40 0.0153365 0.0089816 0.0265156
0.39 0.0151724 0.0089846 0.0257859
0.38 0.0149934 0.0089779 0.0250551
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β0 = 0.0, the temperature has a maximum value of 0.0161258 at z = 0.5, i.e., at the middle of the
layer, and velocity component is symmetric about the middle of the layer. Results are not symmet-
ric for other values of z. For β0 = 1.2, the maximum value of the temperature, which is 0.0089846,
is attained at z = 0.39, i.e., it shifts downward in the layer. For β0 = −0.8, the maximum value of
the temperature, which is 0.0420511, is attained at z = 0.71, i.e., it moves upward.

Both velocity and temperature display similar behavior around the middle of the layer. These are
symmetric about z = 0.5 for β0 = 0.0, and the maximum values shift downward for positive values
of β0 and upward for negative values of β0.

6. Conclusion

Here we study the effect of the vertical rate of change in diffusivity due to a hydro-thermal convec-
tive flow in a horizontal porous medium. The critical Rayleigh and wave numbers are computed
from the linear system. Marginal stability curves are obtained for different values of the vertical
rate of change in thermal diffusivity. The vertical variation in the dependent variables, namely,
the vertical velocity component and the temperature are computed numerically using Runge-Kutta
method in combination of shooting method. Results for different diffusivity parameter are pre-
sented in tabular and graphical forms. Results indicate stabilizing effect on the dependent variables
for the case of positive rate of increase of diffusivity, whereas destabilizing effect for the case of
negative rate of increase of diffusivity. In addition, flow is not symmetric with respect to middle of
the layer for non-zero rate of resistivity.
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