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Abstract

This paper deals with the problem of parameter estimation and optimal control of a tuberculosis
(TB) model with seasonal fluctuations. We first present a uncontrolled TB model with seasonal
fluctuations. We present the theoretical analysis of the uncontrolled TB model without seasonal
fluctuations. After, we propose a numerical study to estimate the unknown parameters of the
TB model with seasonal fluctuations according to demographic and epidemiological data from
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Cameroon. Simulation results are in good accordance with the seasonal variation of the new active
reported cases of TB in Cameroon. Using this TB model with seasonality, the tuberculosis con-
trol is formulated and solved as an optimal control problem, indicating how control terms on the
chemoprophylaxis and treatment should be introduced in the considered TB model to reduce the
number of individuals with active TB. Results provide a framework for designing cost-effective
strategies for TB with two strategies of intervention.

Keywords: Epidemiological models; Tuberculosis; DOTS strategy; Season pattern; Optimal
control
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1. Introduction

Disease spreading has been the subject of intense research since a long time ago (Anderson et
al. (1992), Daley et al. (1999), Murray (2002)). Our current knowledge comprises mathematical
models that have allowed to better understand how an epidemic spreads and to design more effi-
cient immunization and vaccination policies (Anderson et al. (1992), Daley et al. (1999), Murray
(2002)). These models have gained in complexity in recent years capitalizing on data collections
which have provided information on the local and global patterns of relationships in the population
(Hufnagel et al. (2004), Guimera et al. (2005), Colizza et al. (2006)). However, despite significant
advances in medical science, infectious diseases continue to impact human populations in many
parts of the world.

Tuberculosis is a common deadly infectious disease caused mainly by the Mycobacterium tuber-
culosis (M. tuberculosis). It basically attacks the lungs (pulmonary TB), but can also affect the
central nervous system, the circulatory system, the genital-urinary system, bones, joints and even
the skin. Tuberculosis can spread through cough, sneeze, speak, kiss or spit from active pulmonary
TB persons. It can also spread through using of an infected person’s unsterilized eating utensils
and in rare cases a pregnant woman with active TB can infect her fetus (vertical transmission)
(see WHO (2009) and Bleed et al. (1982)). The current world estimate of prevalence is about 33%,
while the number of deaths per year that it is causing reaches more than 3 million people (WHO
(2009).

Depending on the kind and the intensity of immune response that the host immune system performs
after initial infection with the M. tuberculosis bacillus, the individual can suffer latent infection, in
which the bacteria are under a growth-arrest regime and the individual neither suffer any clinical
symptoms nor becomes infectious or actively infected, where the host suffers clinical symptoms
and can transmit the pathogen by air (WHO (2009) and Bleed et al. (1982)). Latently infected
individuals can, generally after an immune-depression episode, reach the active phase. Estimating
the probability of developing direct active infection after a contact, or alternatively, the lifetime’s
risk for a latent infected individual to evolve into the active phase, are not easy tasks. However, it is
generally accepted that only 5-10% of the infections directly produce active TB (WHO (2009) and
Bleed et al. (1982)), while the ranges concerning the estimation of a typical “half-life” of latent
state rounds about 500 years (Styblo (1986)).
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Although TB is not widely recognized as having seasonal trends like measles, diphtheria, chick-
enpox, cholera, rotavirus, malaria, or even sexually transmitted gonorrhea (Grassly et al. (2006)
and Hethcote et al. (1984)), some studies have shown variable periods of peak seasonality in TB
incidence rates in late winter to early spring in South Africa (Murphy et al. (2002)), during sum-
mer in United Kingdom (Schaaf et al. (1996)) and Hong Kong (Douglas et al. (1996)), during
summer and autumn in Spain (Leung et al. (2005)), and during spring and summer in Japan (Rios
et al. (2000)). In the northern India, it was indicated that TB diagnosis peaked between April and
June, and reached a nadir between October and December, and the magnitude of seasonal variation
had an important positive correlation with rates of new smear-positive TB cases (Nagayama et al.
(2006)).

The real causes of seasonal patterns of TB remain unknown, but the seasonal trend, with a higher
incidence rate in winter, may be relevant to the increased periods spent in overcrowded, poorly
ventilated housing conditions, these phenomena much more easily seen than in warm seasons
(Murphy et al. (2002) and Leung et al. (2005)), and/or vitamin D deficiency leading to reactivation
of latent/exposed infection, which may have been the basic causes for the observed TB seasonality
(Nagayama et al. (2006)). Furthermore, in winter and spring, the viral infections like flu are more
frequent and cause immunological deficiency leading to a reactivation of the M. tuberculosis (see
Leung et al. (2005)). There is a growing awareness that seasonality can cause population fluctua-
tions ranging from annual cycles to multi year oscillations, and even chaotic dynamics (Nagayama
et al. (2006)). From an applied perspective, clarifying the mechanisms that link seasonal environ-
mental changes to diseases dynamics may aid in forecasting the long-term health risks, in devel-
oping an effective public health program, and in setting objectives and utilizing limited resources
more effectively (see, for instance, Leung et al. (2005) and Aron et al. (1984)). For these reasons,
we need to identify possible seasonal patterns in the incidence rate for pulmonary tuberculosis.

Mathematical models play a significant role in understanding the transmission dynamics of TB.
Estimation of parameters in a TB mathematical model, for instance, infection rate or reactiva-
tion rate can contribute to better quantify the spread of the disease. Generally, inference of these
parameters is a difficult task because of poor compatibility between observed data and models.
Simulations and epidemiological data have been used to estimate the key parameters of determin-
istic models. Several methods have been introduced and applied to estimate the parameters of TB
models. Approximate Bayesian computation approach has been used to estimate TB transmission
rate parameters for United States by Altizer et al. (2006). Liu et al. (2010) estimated the reactiva-
tion and infection rates of a TB model for China by assuming these rates as sinusoidal functions
and infection rate is estimated to be 2.23 person per month for the period 2005-2009. A synchroni-
sation based method has been implemented to infer the parameters such as treatment rate, disease
induced mortality rate and infection rate of a TB model by Bowong et al. (2010). In particular,
the infection rate in the study is estimated to be 2.04 for the quarterly data during 2003-2007 for
Cameroon. Moualeu et al. (2013) used the iterative Gauss-Newton method to solve the inverse
problem of parameter identification, estimability of parameters have been studied, and estimable
unknown parameters have been computed using real data of TB in Cameroon, subdivided into four
regions. Numerical simulations showed the model to reproduce the TB dynamics in Cameroon and
predict a short term increase in the number of TB active cases over next years. Narula et al. (2016)
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have estimated parameters of a TB model using Ensemble Kalman filter (EnKf) approach. More
precisely, the infection rate and fraction of smear positive cases of TB are estimated in context of
India. The infection rate of TB in Manipur is found to be 2.57 per quarter for the period 2006-2011.

On the other hand, mathematical models can provide a powerful tool for investigating the dynamics
and control of infectious diseases. Optimal control theory provides a valuable tool to begin to
assess the trade-offs between vaccination and treatment strategies (Anderson et al. (1990) and
Lenhart et al. (2007)). Optimal control is a mathematical technique derived from the calculus of
variations. Anyhow we can give suggestions to the public health authorities about the effects of a
particular control policy with respect to others, and in this context the analysis and simulation of
mathematical models may become a powerful tool in the hands of the above authorities.

There are a number of different methods for calculating the optimal control for a specific math-
ematical model. For example, Pontryagin’s maximum principle (Pontryagin et al. (1967)) allows
the calculation of the optimal control for an ordinary differential equations model system with a
given constraint. Variations of Pontryagin’s maximum principle have been derived for other types
of models including partial differential equations and difference equations (Anderson et al. (1990),
Fleming et al. (1975)). These techniques are powerful when applied to disease models and can pro-
vide important insights into the best pathway to reduce disease burden. For example, with a given
mathematical model for a disease, one can calculate the best vaccination schedule balancing the
cost of the vaccine and the cost of the disease burden (see Fleming et al. (1975)). There have been
several articles considering optimal control applied to specific diseases (see, for instance, Joshi
(2002), Jung et al. (2002), and Wang et al. (2004)). However, none of these papers has included
TB seasonality.

The present work considers the parameter estimation as well as the optimal control problem of
the dynamics of transmission of tuberculosis with seasonality. We first present an uncontrolled TB
model that incorporates the essential biological and epidemiological features of this disease such
as the exogenous reinfection and seasonal fluctuations. We present the mathematical analysis of the
uncontrolled TB model without seasonality. After, using the quarterly reported data (2003-2007) of
the National Committee to Fight against Tuberculosis (NCFAT, (2001)), we estimate the infection
and reactivation rates of the TB model with seasonality. Compared to the result obtained by Altizer
et al. (2006), Liu et al. (2010), Bowong et al. (2010), Moualeu et al. (2013) and Narula et al. (2016),
the advantage of the proposed parameter estimation method is that it is less computationally inten-
sive and easier to implement. We point out that the transmission rate of TB and reactivation rate
of latently infected individuals cannot be estimated directly using TB data. So, these parameters
are usually unknown parameters. Narula et al. (2016). have estimated the TB transmission rate
and the fast rout to active TB. The reactivation rate of latently-infected individuals has not been
estimated which is the case in the present work. Also, the transmission and reactivation rates are
time-dependent and capture the saison pattern of TB. This is not the case in Narula et al. (2016).
In addition, we approach the chemoprophylaxis and treatment problem by posing it as an optimal
control problem in which we minimize the benefit based on the levels of latently-infected individ-
uals and infectious, less the systemic cost of chemoprophylaxis and treatment. We found that the
infection level decreases to low levels, but is never eradicated. For the best of authors knowledge,
this study represents the first work that provides an in-depth TB seasonality, parameter estimation
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Figure 1. Flowchart of the dynamical transmission of tuberculosis where λ(t) = β(t)I/N is the force of infection.

and optimal control using real demographic and epidemiological data of the situation of TB in a
developing country like Cameroon.

2. The Model

2.1. Model construction

We consider that individuals within a human community are compartmentalized into four groups:
heathly-or susceptible-S(t), infected but not infectious-or latently infected E(t), sick individuals
I(t) which are infected, and infectious as well-and recovered individuals R(t). Thus, the total pop-
ulation N(t) at time t is N(t) = S(t) + E(t) + I(t) +R(t).

In view of the periodic trend of quarterly new TB cases in Cameroon (NCFAT (2001)) and the
possible causes of the seasonal pattern (Liu et al. (2010)), a model with periodic infection and
reactivation rates may be a natural choice to describe the TB transmission. Thus, we assume that
infection and reactivation rates are periodic positive continuous functions in t with period ω for
some ω > 0. The transition between these sub-populations proceeds in such a way that a suscep-
tible individual acquires the bacteria through a contact with an infectious subject with the trans-
mission rate β(t). In its turn, this newly infected individual may develop the disease directly with
the probability p. However, the most common case is the establishment of a dynamical equilibrium
between the bacillus and the host’s immune system, which allows the survival of the former inside
the latter. When this happens, newly infected individuals become latently infected, because despite
harboring the bacteria in their blood, neither becomes sick nor is able to infect others.

On the other hand, after a certain period of time (which may be several years) and usually fol-
lowing an episode of immunosuppression, the balance between the bacterium and its host can be
broken. In this case, the bacteria grow and the individual falls ill beginning to develop the clin-
ical symptoms of the disease at rate k(t). Also, latently infected individuals who did not receive
effective chemoprophylaxis can be reinfected (exogenously) through a contact with an infectious
subject with the same transmission rate β(t). In addition, if the infection attacks the lungs (pul-
monary TB), the bacillus is present in the sputum, making the guest infectious. After receiving an
effective therapy, infectious can spontaneously recover from the disease. Infectious who did not
received effective therapy can naturally recover and will be moved to the latently infected class.
Recovered individuals can only have partial immunity, and hence, they can undergo a reactivation
of the disease.

The flow diagram of the model is presented in Figure 1.
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Table 1. Numerical values for the parameters of model system (1).

Parameters Description Estimate Source

Λ Recruitment rate 397800 individuals/yr Estimated
β(t) Transmission rate To be estimated
p Fast route to active TB 0.015 Styblo (1986)
σ Reinfection parameter 0.7 Assumed
k(t) Slow route to active TB class To be estimated
µ Natural mortality 0.019896/yr NIS (2007)
d TB mortality of infectious 0.0575/yr NCFAT (2001)
r1 Chemoprophylaxis rate 0.001/yr NCFAT (2001)
α Recovery rate of infectious 0.7311/yr NCFAT (2001)
θ Natural recovery 0.1828/yr Assumed
γ Relapse of recovered individuals 0.0986/yr NCFAT (2001)

The dynamics of the disease, in a well-mixed population, is then described by the following system
of nonlinear non autonomous differential equations:

Ṡ = Λ− λ(t)S − µS,

Ė = (1− p)λ(t)S + θI − σ(1− r1)λ(t)E −A1(t)E,

İ = pλS + γR+ (1− r1)(k(t) + σλ(t))E −A2I,

Ṙ = α(1− θ)I −A3R,

(1)

where

A1(t) = µ+ k(t)(1− r1),
A2 = µ+ d+ θ + α(1− θ), and
A3 = µ+ γ.

In Equation (1), λ(t) = β(t)I/N is the force of the infection; β(t) is the effective contact rate of
infectious that is sufficient to transmit the infection to susceptible; Λ is the recruitment (immigra-
tion and birth) rate, µ is the natural death rate per capital; d is the rate of disease-related death;
r1 is the chemoprophylaxis rate of latently-infected individuals; k(t) is the transition frequency of
latent infection (i.e., the probability that a latently-infected individual becomes infectious); σ is the
probability that the bacteria is transmitted to an old host after a contact with an infectious subject;
α is the recovery rate of infectious (i.e., the probability that an infectious recovers from the disease
after a therapy of treatment); θ is the natural recovery rate (i.e., the probability that an infectious
recovers from the disease without a therapy of treatment) and γ is the relapse rate of recovered
individuals (i.e., the probability that a recovered individual becomes infectious again).

The TB model (1) was simulated with the parameter values given in Table 1.
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2.2. Case of constant parameters

Herein, we analyze model system (1) when parameters are constants. In this case, β(t) = β and
k(t) = k so that model system (1) reduces to

Ṡ = Λ− λS − µS,
Ė = (1− p)λS + θI − σ(1− r1)λ(t)E −A1E,

İ = pλS + γR+ (1− r1)(k + σλ(t))E −A2I,

Ṙ = α(1− θ)I −A3R,

(2)

where A1 = µ+ k(1− r1), A2 = µ+ d+ θ + α(1− θ) and A3 = µ+ γ.

2.2.1. Basic properties

For model system (2) to be epidemiologically meaningful, it is important to prove that all its state
variables are non-negative for all time. In other words, solutions of model system (2) with positive
initial data have to remain positive for all time t > 0. This can be verified as follows. Suppose, for
example, the variable I becomes zero for some time t̄ > 0 , i.e., I(t̄) = 0, while all other variables
are positive. Then, from the I equation we have dI(t̄)/dt > 0. Thus, I(t) ≥ 0 for all t > 0. Similarly,
it can be shown that the remaining variables are also positive for all time t > 0.

Now, we will show that all feasible solutions are uniformly-bounded in a proper subset of Ω. Let
(S,E, I,R) ∈ R4

+ be any solution of model system (2) with non-negative initial conditions. Adding
all equations in the differential system (2) yields

Ṅ = Λ− µN − dI.

Thus, we can deduce that Ṅ(t) ≤ Λ − µN(t). Now, using Gronwall Lemma, it then follows

that lim
t→+∞

N(t) ≤ Λ

µ
, which implies that the trajectories of model system (2) are bounded.

On the other hand, from the differential inequality Ṅ(t) ≤ Λ − µN(t), one can deduce that

N(t) ≤ N(0)e−µt +
Λ

µ
(1 − e−µt). In particular N(t) ≤ Λ

µ
if N(0) ≤ Λ

µ
. Therefore, all feasible

solutions of the components of model system (2) enters the region:

Ω =

{
(S,E, I,R) ∈ R4

+, N(t) ≤ Λ

µ

}
. (3)

Hence, the region Ω, of biological interest, is positively-invariant under the flow induced by model
system (2). Further, it can be shown using the theory of permanence (Hutson et al. (1992)) that all
solutions on the boundary of Ω will eventually enter the interior of Ω. Furthermore, in Ω, the usual
existence, uniqueness and continuation results hold for model system (2). Hence, model system (2)
is well posed mathematically and epidemiologically and it is sufficient to consider the dynamics of
the flow generated by model system (2) in Ω.

2.2.2. Local stability of the disease-free equilibrium (DFE)

For the analysis of the infection’s spread, the so-called disease-free equilibrium is particularly
relevant. By definition, this is obtained by taking I = 0 in equations of model system (2) at the
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equilibrium. Then, the disease-free equilibrium is given by Q0 =

(
Λ

µ
, 0, 0, 0

)
.

Linearizing all equations in model system (2) around the disease-free equilibrium, the Jacobian
matrix of the system is

J =


−µ 0 −β 0

0 −A1 β(1− p) + θ 0

0 k(1− r1) βp−A2 γ

0 0 α(1− θ) −A3

 .

Since −µ < 0, the triangular structure of the Jacobian matrix implies that its stability is associated
with the stability of the following submatrix:

J0 =

 −A1 β(1− p) + θ 0

k(1− r1) βp−A2 γ

0 α(1− θ) −A3

 .

Now let

A = −A1, B = [β(1− p) + θ 0], C =

[
k(1− r1)

0

]
and D =

[
βp−A2 γ

α(1− θ) −A3

]
.

Then, using the result in Kamgang et al. (2005) on the computation of the eigenvalues of any
given matrix of dimension n, the stability of the submatrix J0 is associated with the stability of the
following matrix of dimension 2:

J1 = D − CA−1B =

βp−A2 +
k(1− r1)

A1
[β(1− p) + θ] γ

α(1− θ) −A3

 .
The submatrix J1 is stable if its trace is negative and its determinant non-negative. Therefore, a
sufficient condition for this equilibrium to be unstable is given by

β(µ+ γ)[pµ+ k(1− r1)]
(µ+ γ)[µ(µ+ d+ θ) + k(1− r1)(µ+ d)] + µα(1− θ)[µ+ k(1− r1)]

≤ 1. (4)

Model of this type demonstrates clear infection threshold. In the presence of a threshold, dis-
ease eradication requires the reduction of the infection rate below a critical level where a stable
infection-free equilibrium is guaranteed. In epidemiological terminology, the infection threshold
may be expressed in terms of the basic reproductive number R0, the average number of infections
produced by a single infected individual in a population of susceptibles. From this definition, it is
clear that TB infection cannot spread in a population only if R0 < 1. It then follows that the basic
reproduction number R0 < 1 is given by

R0 =
β(µ+ γ)[pµ+ k(1− r1)]

(µ+ γ)[µ(µ+ d+ θ) + k(1− r1)(µ+ d)] + µα(1− θ)[µ+ k(1− r1)]
. (5)

In conclusion, crossing the threshold reduces the basic reproductive number R0 below unity and
the infection is prevented from propagating.

Figure 2 shows the effects of the chemoprophylaxis rate r1 and the treatment rate α on the basic
reproduction number R0 when k = 0.00013 and β = 6. All other parameter values are fixed as in
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Table 1. As expected, when r1 is fixed, the basic reproduction number,R0, decreases as α increases
and vice versa. Then, combining the chemoprophylaxis of latently infected individuals and treat-
ment of infectious can reduced R0 to less than unity. Therefore, the best control strategy will be
the chemoprophylaxis of latently infected individuals and treatment of infectious or a combination
of chemoprophylaxis and treatment.
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Figure 2. Graphs of the basic reproduction number R0 of model system (2) in dependence of r1 and α when
k = 0.00013 and β = 6. All other parameter values are as in Table 1.

2.2.3. Equilibria and bifurcation analysis

Herein, we investigate the number of equilibrium solutions that model system (2) can have. To this
end, let Q∗ = (S∗, E∗, I∗, R∗) be any arbitrary equilibrium of model system (2). To find conditions
for the existence of an equilibrium for which tuberculosis is endemic in the population (steady
state with I∗ non zero), the Equations in model system (2) are set to zero, i.e.,

Λ− λ∗S∗ − µS∗ = 0,

(1− p)λ∗S∗ − σ(1− r1)λ∗E∗ + θI∗ −A1E
∗ = 0,

pλ∗S∗ + σ(1− r1)λ∗E∗ + k(1− r1)E∗ + γR∗ −A2I
∗ = 0,

α(1− θ)I∗ −A3R
∗ = 0,

(6)

where

λ∗ = β
I∗

N∗
, (7)

is the force of infection at the steady state. Solving the above equations in (6) at the steady state
gives

S∗ =
Λ

µ+ λ∗
, E∗ =

Λλ∗[(1− p)(βµ+ dλ∗) + θ(µ+ λ∗)]

(µ+ λ∗)(βµ+ dλ∗)[A1 + σ(1− r1)λ∗]
,

I∗ =
Λλ∗

βµ+ dλ∗
and R∗ =

αΛ(1− θ)λ∗

A3(βµ+ dλ∗)
.

(8)

Substituting Equation (8) into Equation (7), it can be shown that the non-zero equilibria of system
(2) satisfy the following quadratic equation in terms of λ∗:

a2(λ
∗)2 + a1(λ

∗) + a0 = 0, (9)
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where

a2 = σ(1− r1)[µ+ γ + α(1− θ)],

a1 = σ(1− r1)[µ[µ+ d+ α(1− θ) + γ(µ+ d)− β(µ+ γ)] + (µ+ γ)(µ+ d+ θ − pd)

+µα(1− θ) + k(1− r1)[µ+ γ + α(1− θ)],

a0 = (µ+ γ)[µ(µ+ d+ θ) + k(1− r1)(µ+ d)] + µα(1− θ)[µ+ k(1− r1)](1−R0).

Thus, positive endemic equilibria Q∗ are obtained by solving for λ∗ from the quadratic Equation
(9) and substituting the result (positive values of λ∗) into the expressions of S∗, E∗, I∗ and R∗ given
in Equation (8). Clearly, the coefficient a2 in Equation (9) is always positive, and a0 is positive or
negative depending whetherR0 is less than or greater than unity, respectively. Thus, the number of
possible real roots of the polynomial (9) depends on the signs of a2, a1 and a0. Then, the following
result follows:

Lemma 2.1.

Model system (2) has

(i) a unique endemic equilibrium when a0 < 0, i.e., R0 > 1,
(ii) a unique endemic equilibrium when a1 < 0, and a0 = 0 or a21 − 4a2a0 = 0,

(iii) two endemic equilibria when a0 > 0, a1 < 0 and a21 − 4a2a0 > 0;
(iv) no endemic equilibria in all other cases.

It should be pointed out that the case (iii) indicates the possibility of a backward bifurcation (where
a locally asymptotically stable DFE co-exists with a locally asymptotically stable endemic equi-
librium when R0 < 1 (see, for instance, Dushoff et al. (1998) and Brauer (2004)) in the TB model
(2) when R0 < 1. To check for this, the discriminant a21 − 4a2a0 is set to zero and solved for the
critical value of R0, denoted by Rc, given by

Rc = 1− a21
4a2R∗

, (10)

where R∗ = (µ+ γ)[µ(µ+ d+ θ) + k(1− r1)(µ+ d)] +µα(1− θ)[µ+ k(1− r1)]. Thus, the backward
bifurcation would occur for values of R0 such that Rc < R0 < 1. This is explored below via
numerical simulations.

The backward bifurcation phenomenon is illustrated by simulating model system (2) with the pa-
rameter values of Table 1. The associated backward bifurcation diagram is depicted in Figure 3.

The time series of model system (2) when k = 0.00013 and β = 0.6 (so that R0 = 0.1363) is
shown in Figure 4. This clearly shows that for the case R0 < 1, the profiles can converge to either
the disease-free equilibrium or an endemic equilibrium point, depending on the initial sizes of the
population of the model (owing to the phenomenon of backward bifurcation). It is worth stating
that, for the set of parameter values used, the simulations have to be run for a long-time period (in
hundred of years).
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Figure 3. Bifurcation diagram for model system (2) when k = 0.00013. The notation EEP stands for endemic equilib-
rium point. All other parameter values are as in Table 1.
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Figure 4. Simulation of model system (2). Time series of (a) susceptible individuals, (b) latently infected individuals,
(c) infectious and (d) recovered individual when k = 0.00013 and β = 0.6 (so that R0 = 0.1363). All other
parameter values are as in Table 1.

The epidemiological significance of the phenomenon of backward bifurcation is that the classical
requirement of R0 < 1 is, although necessary, no longer sufficient for disease eradication. In such
a scenario, disease elimination would depend on the initial sizes of the population (state variables)
of the model. That is, the presence of backward bifurcation in the TB transmission model (2)
suggests that the feasibility of controlling TB when R0 < 1 could depend on the initial sizes of
the population. It is important to point out that when there is no exogenous reinfections in the host
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population, that is, σ = 0 in model system (2), model system (2) has a unique endemic equilibrium.
Hence, in this case (with σ = 0 ), no endemic equilibrium exists whenever R0 ≤ 1. It then follows
that, owing to the absence of multiple endemic equilibria for model system (2) with σ = 0 and
R0 ≤ 1, a backward bifurcation is unlikely for model system (2) with σ = 0 and R0 ≤ 1.

3. Parameter Estimation

One of the most important problems in epidemiology is to reconcile the available data with the
mathematical model. Indeed, in most epidemiological models discussed in the literature, the ques-
tion of estimating unknown parameters has not been played a central role. In the sequel, we will
try to evaluate the periodic functions k(t) and β(t) by using only real data of Cameroon.

From the National Committee for Fight against Tuberculosis in Cameroon (NCFAT (2001)), we
have obtained quarterly numbers of newly reported TB cases from January 2003 to December
2007. The quarterly reported TB cases in Cameroon from 2003 and 2007 show an obvious seasonal
fluctuation, with a seasonality peak in the first quarter of each year. This seasonal trend may be
mainly attributed to increase times spent in overcrowded, poorly ventilated housing conditions
(Schaaf et al. (1996), Rios et al. (2000), Altizer et al. (2006)), and/or more frequent viral infections,
which immunological deficiency leading to reactivation of the M. tuberculosis (see for instance
Rios et al. (2000)).

The quarterly reported new TB cases in Cameroon from 2003 to 2007 are given in Table 2.

Table 2. The numbers of quarterly reported new TB cases.

Quarter 2003 2004 2005 2006 2007
First quarter 3032 2875 3334 3703 3491

Second quarter 2778 2854 3323 3626 3160
Third quarter 2475 2655 3187 3171 3157
Four quarter 2624 3122 3325 3315 3208

The quarterly numbers of new TB cases in Table 2 correspond to the term:

f(t) = λ(t)pS(t) + (1− r1)[k(t) + σλ(t)]E(t), (11)

in the third equation of model system (1).

Since the variables and parameters in model system (1) are continuous functions o the time f t, we
use trigonometric functions to fit f(t) as a periodic function with five years of observation. Then,
using the least-squares trigonometric of the software Mathematica, one has

f(t) ≈ 3120.75− 232.102 cos(2πt/5) + 44.9921 cos(4πt/5)

+37.0004 cos(6πt/5)− 32.8381 cos(8πt/5) + 179 cos(10πt/5)

+19.7421 cos(12πt/5)− 68.5405 cos(14πt/5)− 313.023 sin(2πt/5)

−63.8465 sin(4πt/5)− 54.4061 sin(6πt/5)− 47.7114 sin(8πt/5)

+14.7 sin(10πt/5)− 29.9372 sin(12πt/5) + 12.4314 sin(14πt/5).

(12)



964 A. Temgoua et al.

The comparison of the data with the curve is shown in Figure 5. It clearly appears that the data and
the curve match quite well.

2003 2004  2005  2006  2007  2008  
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3200

3400
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Time(year)

Figure 5. The quarterly numbers of new TB cases and its fitted curve.

After simulations and comparisons, the infection rate β(t) and the reactivation rate k(t) have been
chosen to be β(t) = β0β1(t) and k(t) = k0k1(t), respectively, where β1(t) and k1(t) are the before
following two periodic functions:

β1(t) ≈ 2.6006− 0.1934 cos(2πt/5) + 0.0375 cos(4πt/5) + 0.0308 cos(6πt/5)

−0.0274 cos(8πt/5) + 0.1492 cos(10πt/5) + 0.0165 cos(12πt/5)

−0.0571 cos(14πt/5)− 0.2609 sin(2πt/5)− 0.0532 sin(4πt/5)

−0.0453 sin(6πt/5)− 0.0398 sin(8πt/5) + 0.0122 sin(10πt/5)

−0.0249 sin(12πt/5) + 0.0104 sin(14πt/5),

(13)

and

k1(t) ≈ (10−5)[9.3125− 0.6926 cos(2πt/5) + 0.1343 cos(4πt/5) + 0.1104 cos(6πt/5)

−0.098 cos(8πt/5) + 0.5343 cos(10πt/5) + 0.0589 cos(12πt/5)

−0.2045 cos(14πt/5)− 0.9341 sin(2πt/5)− 0.1905 sin(4πt/5)

−0.1624 sin(6πt/5)− 0.1424 sin(8πt/5) + 0.0439 sin(10πt/5)

−0.0893 sin(12πt/5) + 0.0371 sin(14πt/5)].

(14)

Note that β0 and k0 are related to the magnitudes of the seasonal fluctuation. After simulations and
comparisons, we choose β0 = 0.01 and k0 = 0.133. In the sensitive analysis, those two parameters
are varied to see the influences of the infection rate and the reactivation rate on the new TB case
numbers. All other parameter values in the simulations are as in Table 1.

Substituting those values of parameters and functions into model system (1), we obtain the follow-
ing TB transmission model to simulate TB infection in Cameroon:

Ṡ = 397800− β0β1(t)
SI

N
− 0.019896S,

Ė = 0.9855β0β1(t)
SI

N
+ 0.1828I − 24.9755β0β1(t)

EI

N
− 0.999k0k1(t)E − 0.019896E,

İ = 0.015β0β1(t)
SI

N
+ 0.0986R+ 0.999k0k1(t)E + 24.975β0β1(t)

EI

N
− 0.8577I,

Ṙ = 0.5975I − 0.1185R.

(15)
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Figure 6. New TB cases: reported number and simulation curve.

We take the first quarter of 2003 as the start time of our simulation. The statistics of the National
Institute of Statistics (NIS (2007)) show that the total population of the whole Cameroonian pop-
ulation in 2003 is N(0) = 15, 685, 000. According to the National Committee of Fight against
Tuberculosis in Cameroon (NCFAT (2001)), the number of new and relapse cases of TB was 3650,
then we take I(0) = 3, 650. We assume that 70% of the Cameroonian population is infected with
Mycobacterium Tuberculosis, that is, S(0) = 4, 705, 500. From the average age of the active TB
cases, the death rate, and the life expectation, we get the estimation that R(0) = 2, 669. Then, the
direct computation implies that E(0) = 10, 973, 681.

The simulation results are reported in Figure 6 and Figure 7.

Figure 6 illustrates the comparison of the quarterly reported data and the simulation curve of new
TB cases in Cameroon. The stars in the curve stand for the reported new TB cases, from January
2003 to December 2007. The simulation result based on our model exhibits the seasonal fluctuation
and matches the data with some small error between 2003 and 2005 but after 2005 the model
matches the data well. In fact, the dynamics of the suggested TB model is in a transient period
between 2003 and 2005. This can be due to the choice of the initial conditions which may not be
the exact initial conditions corresponding to the first quarter of 2003. To resolve this problem, we
need more data.

Figure 7 gives the trends of susceptible, latently-infected, infectious and recovered individuals in
the future several years, respectively.

Sensitivity analysis of parameters is not only critical to model verification and validation in the
process of model development and refinement, but also provide insight to the robustness of the
model results when making decisions (Saltelli et al. (2000)).

Figure 8 illustrates the impact of β0 and k0 on the quarterly new TB cases. From this figure, one
can see that β0 and k0 have evident impacts on the number of new TB cases. The number of new
TB cases increases substantially with a rise in β0 and k0, and fails with a decrease in β0 and k0.
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Figure 7. Simulation of model system (1) performed with β0 = 0.01 and k0 = 0.133. Time series of (a) susceptible
individuals, (b) latently infected individuals, (c) infectious and (d) recovered individuals. All other parameter
values are as in Table 1.
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Figure 8. The relationship between new TB cases for different values of β0 and k0. In the green-line curve β0 = 0.0105
and k0 = 0.134 and in black-line curve β0 = 0.009 and k0 = 0.132. Here, the stars correspond to the real
data from Cameroon and the red-line curve stands for β0 = 0.01 and k0 = 0.133.

4. Optimal Intervention Strategies

Several kinds of interesting nonlinear dynamics behavior of model system (1) such as the backward
bifurcation and seasonal patterns have been studied in the previous sections. Since, the backward
bifurcation is due to exogenous reinfections, it is then desirable to reduce the exogenous reinfec-
tions and failure of treatment in model system (1) so that the number of latently infected individuals
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that may develop an active TB will become lower. This is the aim of this section.

4.1. Optimal control problem

Two intervention methods, called controls, are now included in model system (1). Controls are
represented as functions of time u(t) and v(t) and assigned reasonable upper and lower bounds.
First, u(t) represents the effort on the chemoprophylaxis parameter (r1) of latently infected indi-
viduals to reduce the number of individuals that may become infectious. Second, v(t) is the effort
on treatment (r2) of infectious to increase the number of recovered individuals, i.e., to reduce the
number of infectious.

Using the same parameter and class names as in model system (1), the system of differential
equations describing our model with controls is

Ṡ = Λ− λ(t)S − µS,
Ė = λ(t)(1− p)S + θI − (1− ur1)[k(t) + σλ(t)]E − µE,
İ = λ(t)pS + γR+ (1− ur1)[k(t) + σλ(t)]E − vα(1− θ)I − (µ+ d)I,

Ṙ = vα(1− θ)I −A3R,

(16)

where λ(t) and A3 are defined as in model system (1). Thus, the optimal control objective is to
solve the following tracking problem. A control scheme is assumed to be optimal if it minimizes
the objective functional:

J(u, v) =

∫ T

0
[B1I(t) +B2u

2(t) +B3v
2(t)]dt, (17)

where B1, B2 and B3 are balancing coefficients transforming the integral into the price in Euros
expended over a finite time period T in years. The expressions under the integral are costs for
implementation of the two controls. Quadratic expressions of the controls are included to indicate
non-linearly potentially arising at high treatment levels. We assume that there are practical limita-
tions on the maximum rate at which individuals who may treated via chemoprophylaxis or therapy
in a given time period and we define positive constants umax and vmax accordingly.

Pontryagin’s Maximum principle (Pontryagin et al. (1967)) introduces adjoints functions that allow
us to attach our state system, i.e., S, E, I and R differential equations, to our objective functional.
After first showing the existence of optimal controls (see Fleming et al. (1975)), this principle
can be used to obtain differential equations for the adjoint variables, the corresponding boundary
conditions and the characterization of an optimal control double u∗ and v∗. This characterization
gives a representation of an optimal control in terms of the state and adjoint functions. Also, this
principle converts the problem of minimizing the objective functional subject to the state system
into minimizing the Hamiltonian with respect to the controls (bounded measurable functions) at
each time t.

4.2. Characterization of optimal controls

We invoke Pontryagin’s Maximum Principle (Pontryagin et al. (1967)) to determine the precise
formulation of our optimal controls u∗(t) and v∗(t). To do this, we note that our Hamiltonian is



968 A. Temgoua et al.

given by

H = B1I(t) +B2u
2(t) +B3v

2(t) + wS [Λ− λ(t)S(t)− µS(t)]

+ wE [λ(t)(1− p)S(t) + θI(t)− (1− u(t)r1)[k(t) + σλ(t)]E(t)− µE(t)]

+ wI [λ(t)pS(t) + γR(t) + (1− u(t)r1)[k(t) + σλ(t)]E(t)

− v(t)α(1− θ)I(t)− (µ+ d)I(t)] + wR[v(t)α(1− θ)I(t)−A3R(t)],

(18)

where wS , wE , wI and wR are the adjoint functions associated with their respective states. Note that
in H, each adjoint function multiplies the right-hand side of the differential equation of its corre-
sponding state function. The first terms in H come from the integrand of the objective functional.
Thus, the adjoint variable wj , j = S,E, I together with our state system determine our optimality
system.

Pontryagin’s Maximum Principle states that the unconstrained optimal controls u∗ and v∗ satisfy

∂H

∂u
= 0 and

∂H

∂v
= 0,

whenever 0 < u∗(t) < umax and 0 < v∗(t) < vmax, and taking the bounds into account. So, we find
∂H

∂u
and

∂H

∂v
by setting our partial derivatives of H equal to zero. Thus, one obtains, in compact

form:

u∗(t) = min(umax,max(û(t), 0)) and v∗(t) = min(vmax,max(v̂(t), 0)), (19)

where

û =
r1(wI − wE)[k(t) + σλ(t)]E(t)

2B2
and v̂ =

α(1− θ)(wI − wR)I(t)

2B3
.

4.3. Derivation of the optimality system

Getting the optimality system is an important part of this problem. It describes mathematically how
the system behaves under the application of the controls. Therefore, we may find how the different
populations of susceptible, latently-infected, infectious and recovered individuals decay or grow
when latently infected individuals and infectious are treated with optimal chemoprophylaxis and
therapy as characterized in the previous subsection.

The optimality system is defined as the state system together with the adjoint system and the
optimal controls u∗ and v∗. The adjoint system is given by

dwS
dt

= −∂H
∂S

,
dwE
dt

= −∂H
∂E

,
dwI
dt

= −∂H
∂I

and
dwR
dt

= −∂H
∂R

.

Then, given an optimal control double (u∗, v∗) and the corresponding states (S∗, E∗, I∗, R∗), there
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exists adjoint functions satisfying:

dwS
dt

= β(t)
I(N − S)

N2
[wS − (1− p)wE − pwI ] + β(t)σ(1− ur1)(wI − wE)

EI

N2
+ µwS ,

dwE
dt

= β(t)
SI

N2
[−wS + (1− p)wE + pwI ] + β(t)σ(1− ur1)(wE − wI)

I(N − E)

N2

+k(t)(wE − wI)(1− ur1) + µwE ,
dwI
dt

= −B1 + β(t)
S(N − I)

N2
[wS − (1− p)wE − pwI ] + β(t)σ(1− ur1)(wE − wI)

E(N − I)

N2

−θwE + α(1− θ)v(wI − wR) + (µ+ d)wI ,
dwR
dt

= β(t)
SI

N2
[−wS + (1− p)wE + pwI ] + β(t)σ(1− ur1)(wE − wI)

EI

N2
− γwI +A3wR.

(20)

The final component in the optimality system is the set of transversality conditions, which in this
case reduces to end conditions on the adjoint variables. They are a consequence of the following
result, which can also be found in Fleming and Rishel (1975).

Given the maximisation problem max J [u] = F (x(T )) +
∫ T
0 f0(x, u)dt, subject to the state system

dx/dt = f(x, t, u) and such that x(T ) belongs to some target set g(x(T )), we have the following
transversality conditions on the adjoint variables:

wi(T ) = ∇F (x(T )) +

k∑
i=1

cigi(x(T )). (21)

The function F is known as the terminal cost.

In our problem, there is no terminal cost, so F (x(T )) = 0. We also do not have a target set for
our state variables; we have a desired end result, of course, but the final state is in fact free, so the
summation term is also zero.

Therefore, the transversality conditions for the adjoint variables are

wS(T ) = 0, wE(T ) = 0, wI(T ) = 0 and wR(T ) = 0. (22)

The state system of the differential equations and the adjoint system of the differential equations
together with the control characterization above from the optimality system have to be solved
numerically. Since the state equations have initial conditions and the adjoint equations have final
time conditions, we cannot solve the optimality system directly by only sweeping forward in time.
Thus, an iterative algorithm, “forward-backward sweep method” (see Lenhart et al. (2007)), is
used. An initial estimate for the controls is made. The state system is then solved forward in time
from the dynamics using a Runge-Kutta method of fourth order. The resulting state values are
placed in the right-hand sides of the adjoint differential equations. Then, the adjoint system with
the given initial conditions is solved backward in time, again employing a fourth Runge-Kutta
method. Both state and adjoint values are used to update the control using the characterization, and
then the process is repeated. This iterative process terminates when the current state, adjoint, and
control values converge sufficiently.
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4.4. Optimal control numerical simulations

Numerical solutions to the optimality system comprising of the state system (16) and the adjoint
system (20) are carried out using parameters of Figure 7. The initial conditions have been chosen
to be S(0) = 6, 600, 000, E(0) = 9, 600, 000, I(0) = 4, 600 and R(0) = 13, 000, which are the number
of susceptible, latently-infected, infectious and recovered individuals in 2010 in the mainland of
Cameroon (predicted by our numerical study in Figure 7) as the start time of simulation. With this
strategy, the controls on chemoprophylaxis u and treatment v are optimized, with weight factor
B1 = 75 Euro per year of the therapy, B2 = 15 Euro (per proportion of E treated)2 and B3 = 10

Euro (per proportion of I treated)2. Also, we take umax = vmax = 1. Cost coefficients are fixed
within the integral expression (17) and the optimal schedule of the two controls over T = 5 year is
simulated.

Numerical simulations are depicted in Figure 9 and Figure 10. One can see from Figure 9, that
the optimal chemoprophylaxis and drug treatment protocol have a very desirable effect upon the
population of infectious which decreases for almost the entire length of treatment.
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Figure 9. Dynamics of model system (16) showing the effect of chemoprophylaxis and treatment rates on the host
population. Time series of (a) susceptible individuals, (b) latently infected individuals, (c) infectious and (d)
recovered individuals. All other parameter values are as in Figure 7.

As Figure 10 illustrates, optimal control results provide clearly different strategies for relative ap-
plication of chemoprophylaxis of latently-infected individuals and treatment of infectious for the
Cameroonian population. From this figure, we can see that the disease chemoprophylaxis control
u and the disease treatment control v are at the upper bounds umax = 1 and vmax = 1 all through the
5 years of the simulations and drop rapidly at the end. For this population, chemoprophylaxis and
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Figure 10. Optimal balance of controls for model system (16). (a) Optimal chemoprophylaxis control u and (b) optimal
treatment control v. All other parameter values are as in Figure 7.

treatment greatly reduces death due to disease. Consequently, fewer funds can be allow for chemo-
prophylaxis in the optimal scheme; however, a temporary maximum treatment is advantageous at
the onset of the infection. In combination with other controls, high level of chemoprophylaxis is
most beneficial at the beginning of a TB control program to decrease the rate at which latently-
infected individuals become infectious, providing more time to effectively implement the treat-
ment. Recall that our analysis on the basic reproduction number revealed that chemoprophylaxis
and treatment play a strong role on controlling the total number of infectious.

5. Conclusion

This paper has studied the problem of parameter estimation and optimal control of a compre-
hensive, continuous deterministic model for the dynamics of transmission of TB within a human
community. We first presented a mathematical model that can describe the TB seasonal by incor-
porating periodic coefficients. The uncontrolled model with constant parameters has been analyzed
to gain insight into its qualitative dynamics. We have mainly found that the model with constant
parameters exhibits the phenomenon of backward bifurcation, where the stable disease-free equi-
librium co-exists with a stable endemic equilibrium, when the basic reproduction number is less
than unity. This (backward bifurcation) dynamics feature is caused by the reinfection of latently-
infected and recovered individuals. After, we have proposed a numerical study to estimate some
parameters of the model from real data of TB in Cameroon.

It has been found that there is a seasonal pattern of new TB cases in the mainland of Cameroon.
Throughout numerical simulations, we found that the number of new TB cases is an increasing
function of β0 or k0 and is more sensitive to k0 than β0. An optimal control strategy for the TB
model with seasonality has been presented. The proposed optimal control shown the result of op-
timally controlling exogenous reinfections using chemoprophylaxis and failure of treatment in the
reduction of the number of individuals with active TB. However, the control of epidemic systems is
not usually an easy task since in real situations it is rather difficult to implement the control policies
suggested by the mathematical analysis. Through numerical simulation, we observe that our con-
trols actually remain close to constants soon after initiation of chemoprophylaxis and treatment,
and drop rapidly near the end.
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We believe that this initial drop is directly dependent upon the action of the recovered which occurs
shortly after chemoprophylaxis and treatment initiation in response to the high infection level. That
is, our optimal chemoprophylaxis and treatment are actually reduced for a period of time, while the
recovered in the host population takes over. This indicates that a better care of infectious by some
means other than continuation administration of drugs should be considered seriously in clinical
setting.

An important result of this analysis is that a cost-effective balance of chemoprophylaxis and treat-
ment methods can successfully control TB in Cameroon. Treatment strategies such as interruption
of drug therapy should also be considered. This can be tested clinically via drug trails, but also
mathematically using a periodic control.

REFERENCES

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M. and Rohani, P. (2006). Seasonality
and the dynamics of infectious diseases, Ecol. Lett., Vol. 9, pp. 467–484.

Anderson, B.D.O. and Moor, J.B. (1990) Optimal Control: Linear Quadratic Methods, Prentice-
Hall, NY.

Anderson, R.M. and May, R.M. (1992). Infectious Diseases of Humans: Dynamics and Control,
Oxford University Press, Oxford, England.

Aron, J.L. and Schwartz, I.B. (1984). Seasonality and period-doubling bifurcations in an epidemic
model, J. Theor. Biol., Vol. 110, pp. 665–679.

Bleed, D., Watt, C. and Dye, C. (1982). Epidemiology of tuberculosis, Am. Rev. Respir. Dis., Vol.
125, pp. 8–13.

Bowong, S. (2010). Optimal control of the transmission dynamics of tuberculosis, Nonlinear dy-
namics, Vol. 61, pp. 729–748. doi:10.1007/s11071-010-9683-9

Bowong, S. and Kurths, J. (2010). Parameter estimation based synchronization for an epidemic
model with application to tuberculosis in Cameroon, Phys Lett A, Vol. 374, pp. 449–505.

Brauer, F. (2004). Backward bifurcations in simple vaccination models, J. Math. Ana. Appl., Vol.
298, pp. 418–431.

Colizza, V., Barrat, A., Barthélemy, M. and Vespignani, A. (2006). The role of the airline trans-
portation network in the prediction and predictability of global epidemics, Proc. Natl. Acad.
Sci. U.S.A., Vol. 103, pp. 2015–2020.

Daley, D.J. and Gani, J. (1999) Epidemic Modeling, Cambridge University Press, Cambridge, Eng-
land.

Daniel, T., Bates, J. and Downes, K. (1994). in Tuberculosis: Pathogenesis, Protection, and Con-
trol, edited by B. R. Bloom American Society for Microbiology, Washington, pp. 13–24.

Douglas, A.S., Strachan, D.P. and Maxwell, J.D. (1996). Seasonality of tuberculosis: the reverse
of other respiratory diseases in the UK, Thorax, Vol. 51, pp. 944–946.

Dushoff, J., Huang, W. and Castillo-Chavez, C. (1998). Backwards bifurcations and catastrophe in
simple models of fatal disease, J. Math. Biol., Vol. 36, pp. 227–248.



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 973

Dye, C. and Williams, B.G. (2010). The Population Dynamics and Control of Tuberculosis, Sci-
ence, Vol. 328, pp. 856–861.

Fleming, W. and Rishel, R. (1975). Deterministic and stochastic optimal control, Springer Verlag,
New York.

Guimera, R., Mossa, S., Turtschi, A. and Amaral, L.A.N. (2005). The worldwide air transportation
network: Anomalous centrality, community structure, and cities global roles, Proc. Natl. Acad.
Sci. U.S.A., Vol. 102, pp. 7794–7799.

Hufnagel, L., Brockmann, D. and T. Geisel, T. (2004). Forecast and control of epidemics in a
globalized world, Proc. Natl. Acad. Sci. U.S.A., Vol. 101, pp. 15124–15129.

Hutson, V. and K. Schmitt, K. (1992). Permanence and the dynamics of biological systems, Math.
Biosci., Vol. 111, pp. 1–71.

Joshi, H.R. (2002). Optimal Control of an HIV Immunology Model, Optimal Control Applications
& Methods, Vol. 23, pp. 199–213.

Jung, E. and Feng, Z. (2002). Optimal control of treatments in a two-strain tuberculosis model,
Dis. Cont. Dyn. Syst. Series B, Vol. 2, pp. 473–482.

Kamgang, J.C. and Sallet, G. (2008). Computation of threshold conditions for epidemiological
models and global stability of the disease-free equilibrium (DFE), Math. Biosc., Vol. 213, pp.
1–12.

Kamien I.M., and Schwartz, N.L. (1991). Dynamics Optimization, Advanced Textbooks in Eco-
nomics V. 31, North-Holland Publishing Co.

Lakshmikantham, V., Leela, S. and Martynyuk, A.A. (1989). Stability analysis of nonlinear sys-
tems, Marcel Dekker, Inc., New-York and Basel.

Lenhart, S., and J. Workman, J. (2007). Optimal Control Applied to Biological Models, Chapman
and Hall.

Leung, C.C., Yew, W.W., Chan, T.Y.K., Tam, C.M., Chan, C.Y., Chan, C.K., Tang, N., Chang, K.C.
and Law, W.S. (2005). Seasonal pattern of tuberculosis in Hong Kong, Int. J. Epidemiol., Vol.
34, pp. 924–930.

Liu, L., Zhao, X-Q. and Zhou, Y. (2010). A Tuberculosis Model with Seasonality, Bull. Math.
Biol., Vol. 72, No. 4, pp. 931–952. doi:10.1007/s11538-009-9477-8.

Miller, R.L., Schaefer, E., Gaff, H., Fister, K.R., and Lenhart, S. (2010). Modeling opti-
mal intervention strategies for cholera, Bul. Math. Biol.,Vol. 72, No. 8, pp. 2004–2018.
doi:10.1007/s11538-010-9521-8

Moualeu, D.P., Bowong, S. and Kurths, J. (2013). Parameter estimation of a tuberculosis model in
a patchy environment: Case of Cameroon, Biomat, Vol. 2013, pp. 352–373.

Murphy, B.M., Singer, B.H., Anderson, S. and Kirschner, S. (2002). Comparing epidemic tuber-
culosis in demographically distinct heterogeneous populations, Math. Biosci.,- Vol. 180, pp.
161–185.

Murray, J.D. (2002). Mathematical Biology, Springer-Verlag, Berlin, Germany.
Nagayama, N. and Ohmori, M. (2006). Seasonality in various forms of tuberculosis, Int. J. Tuberc.

Lung Dis., Vol. 10, pp. 1117–1122.
Narula, P., Piratla, V., Bansal, A., Azad, S. and Lio, P. (2016). Parameter estimation of tuberculosis

transmission model using Ensemble Kalman filter across Indian states and union territories,
Infect. Disease and Health, Vol. 20, No. 4, pp. 184–191.



974 A. Temgoua et al.

National Committee of Fight Against Tuberculosis, (2001). Guide du personnel de la santé, Min-
istère de la santé publique, Cameroon.

National Institute of Statistics, Evolution des systèmes statistiques nationaux (Cameroun, 2007).
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V. and Mishchenko, E.F. (1967). The Mathe-

matical Theory of Optimal Processes, Wiley, New York.
Rios, M., Garcia, J.M., Sanchez, J. A. and Perez, D. (2000). A statistical analysis of the seasonality

in pulmonary tuberculosis, Eur. J. Epidemiol., Vol. 16, pp. 483–488.
Saltelli, A., Chan, K. and Scott, M. (2000). Sensitivity Analysis, Probability and Statistics, Series.

Wiley, New York.
Schaaf, H.S., Nel, E.D., Beyers, N., Gie, R.P., Scott, F. and Donald, P.R. (1996). A decade of

experience with Mycobacterium tuberculosis culture from children: a seasonal influence on
incidence of childhood tuberculosis, Tuber. Lung Dis., Vol. 77, pp. 43–46.

Styblo, K. (1986). Tuberculosis control and surveillance, in Recent Advances in Respiratory
Medicine (edited by D. Flenley and T. Petty), London, Vol. 4, pp. 77108–12.

Styblo, K., Meijer, J. and Sutherland, I. (1969). The transmission of tubercle bacilli: Its trend in a
human population, Bull. Int. Union Tuberc., Vol. 24, pp. 137–78.

Tanaka, M.M., Francis, A.R., Luciani, F. and Sisson, S.A. (2006). Using approximate Bayesian
computation to estimate tuberculosis transmission parameters from genotype data, Genetics,
Vol. 173, pp. 1511e20–1511e27.

Thorpe, L.E., Frieden, T.R., Laserson, K.F., Wells, C. and Khatri, G.R. (2004). Seasonality of
tuberculosis in India: Is it real and what does it tell us?, Lancet, Vol. 364, pp. 1613–14.

Wang, W. and Ruan, S. (2004). Simulating the SARS outbreak in Beijing with limited data, J. Th.
Biol., Vol. 227, pp. 369–379.

Wilson, L. (1990). The historical decline of tuberculosis in Europe and America: its causes and
significance, J. Hist. Med. Allied Sci., Vol. 45, pp. 366–396.

World Health Organization (2009). Global Tuberculosis Control: A Short Update to the 2009 Re-
port, World Health Organization, Geneva.


