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Abstract  

 
The main goal in this work is to establish a new and efficient analytical scheme for space fractional 

telegraph equation (FTE) by means of fractional Sumudu decomposition method (SDM). The fractional 
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SDM gives us an approximate convergent series solution. The stability of the analytical scheme is also 

studied. The approximate solutions obtained by SDM show that the approach is easy to implement and 

computationally very much attractive. Further, some numerical examples are presented to illustrate the 

accuracy and stability for linear and nonlinear cases. 

 
Keywords:  Caputo’s fractional derivative; FTE ST; Adomian decomposition method; stability; 

analytical scheme; approximate solution; convergent series 

 

MSC 2010 No.: 26A33, 35A22, 33E12, 35R11 

 

1. Introduction 

Fractional calculus (FC) is a topic of attention for the last decades. Calculation and derivatives with the 

fractional order are most appropriate and their models are more general and sufficient as equate to the 

classical order models. In the recent years, some physical problems have been characterized 

mathematically by fractional derivatives. These representations have offered good results in the 

modeling of real world problems (see Morales-Delgado et al. (2018), Podlubny (1999), Soltan et al. 

(2017)). Some important definitions of fractional operators were given by Coimbra, Riesz, Riemann-

Liouville, Hadamard, Weyl, Grünwald-Letnikov, Liouville-Caputo, Caputo-Fabrizio, Baleanu and 

Fernandez (2018), Miljković et al. (2017)).  

 

FC has some essential differences in comparison with its integer counterpart. The fractional-order 

differential equations are general form of integer-order differential equations, and they define the whole 

time domain for a physical process. However, the integer-order derivative is connected to the local 

properties of a physical system at specific time (is an ideal Markov system and the system does not 

convey any info about the memory). A physical interpretation of equations with fractional calculation 

and derivatives with esteem to time is related with the memory effects. The fractional derivatives contain 

an integral operator of which kernel function (power, exponential of Mittag-Leffler type) is a memory 

function that comprises non-local interaction. The fractional derivative in time comprises info about the 

function at formerly points, and so it keeps memory effect. The order of the fractional derivative can be 

read as an index of memory. Rendering to these details, FC has now been presented to be effective in 

several theoretical and applied to the fields such as physics, engineering, finance, signal processing, 

control, bioengineering, chaos theory, among others (see Elwakil et al. (2017), Ionescu et al. (2017), 

Kilbas et al. (2006), Magin (2006), Pandey and Mishra  (2017), Vastarouchas et al. (2017)).Here we 

now present some useful works in the available literature describing the analytical solutions of FTE and 

its applications in different scientific fields.  

 

For example, Pandey and Mishra (2017) considered the space FTE for the analytical solutions by means 

of the homotopy analysis fractional Sumudu transform method (HAFSTM). They analyzed their work 

for different values of the fractional order derivative. Kumar (2014) signified a fresh and easy algorithm 

for space FTE, and specifically he applied fractional homotopy analysis transform method (HATM) with 

Adomian polynomials.  He also used Homotopy perturbation transform method (HPTM). Tawfik et al. 

(2018) considered the approximation of time and space FTE and advection diffusion equations in 

Caputo’s sense with the help of Laplace-Fourier method and presented numerical results. Navickas et al. 
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(2017) considered analytical solution for nonlinear FTE in Caputo’s and Riemann-Liouville sense by the 

use of operator and base technique. They presented their work for Riccati equations with different values 

of derivative. Mollahasani et al. (2016) operated decent method for the solution of FTE on the approach 

of operational matrices of Legendre polynomials for the hybrid and Block pulse functions.  They proved 

the effectiveness of their work with some numerical examples.  

 

Das et al. (2011) considered approximation of time FTE by means of Homotopy analysis technique 

(HAT) with the use of different time frictional order derivative. Guner et al. (2017) studied exponential 

function technique for the nonlinear portion of Kolmogorov-Petrovskii-Piskunov and FTE equations 

with the help of Jumarie’s modified Riemann-Liouville sense to reduce nonlinear FTE to nonlinear 

ordinary differential equations. They described their method via few examples. Hosseini et al.  (2014) 

[introduced radial basis functions (RBF) for the solution of time FTE by the help of Caputo’s sense to 

achieve a finite convergent scheme and presented some numerical examples for accuracy of the method. 

Chen et al. (2008) analyzed time FTE by the help of separating variables.  They used Dirichlet Neumann 

and Robin nonhomogeneous boundary conditions. Zhao and Li (2012) considered Galerkiin finite 

element approach for spatial Riemann-Liouville fractional derivative (FD) and finite difference scheme 

for temporal Caputo’s fractional derivative for the fully and semi distinct calculation.  They provided 

existence, uniqueness, stability and error analysis of a calculation for some examples. Jiang and Lin 

(2011) studied exact solution of time FTE by the help of Kernel space reproducing with Robin boundary 

value condition (BVC) in Caputo’s sense. Ford et al. (2013) considered two parameter FTE used 

Caputo’s FD by numerical approach, and they also provided some numerical examples.  

 

Golmankhaneh et al. (2012) produced a comparative study of iterative schemes for the solutions of the 

nonlinear Burgers, Sturm-Liouville and Navier-Stokes models and given applications of their results. 

Jafarian et al. (2013) established soliton solution for Kadomtsev-Petviashvili-II models with the help of 

homotopy analysis technique and provided applications of their scheme. Loghmni and Javanmardi 

(2012) given a numerical scheme for sequential fractional order models involving Caputo’s fractional 

differential operator. Li (2012) produced a numerical solution of fractional differential models through 

cubic B-spline wavelet collocation technique. Kareem (2014) given some efficient numerical schemes 

for fractional order differential equations and illustrated applications. Secer et al. (2013) produced 

approximate solutions via Sinc-Galerkin method for solutions of fractional order models. Shiralashetti 

and Deshi (2016) established an efficient numerical scheme based on Haar wavelets for the approximate 

solutions of multi-term fractional order models and provided illustrative examples. Hesameddini and 

Asadollahifard (2015) illustrated numerical scheme for the solution of multi-order fractional differential 

models with the help of Sinc-collocation techniques. Povstenko (2012) formulated time FTE for thermal 

stress used Laplace and Hankel transforms with respect to time and coordinate. Srivastava et al. (2014) 

analyzed time 2D and 3D FTE by the help of differential reduced transform approach, and they also 

provided few examples for the accuracy and convergence of their method. Mohebbi et al.  (2014) 

considered approximation of 1D and 2D time FTE used radial basis functions by the help of meshless 

approach and Kansa’s approach, and demonstrated numerical result as well. Hashemi and Baleanu 

(2016) studied combined line and geometric method for high order time FTE in Caputo’s FD. They 

inputted few numerical examples to show the accuracy and influence of the method. Luo and  Du  

(2013) operated cubic Hermite interpolation 4th order method to solve 1D TE for completely 

stabilization, and they used numerical simulation to prove the stability and accuracy of their approach. 

For further related results, we refer the readers to the references of this paper and Alam and  Tunç 

(2016). 
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2.  Background information 

Here, we introduce some definitions from the literature which are Riemann-Liouville fractional 

integration, fractional divertive in Caputo’s sense and Sumudu integral transform. Therefore, Sumudu 

transform (ST)  has simple and useful formulation and properties. So,  it is assurance and powerful 

approach to handle different engineering and applied mathematics science problems. We use little 

iteration to reach near to exact solution by help of ST (see Belgacem & Karaballi (2006)). 

 

Definition 2.1. (Pandey and Mishra (2017))   

The Riemann-Liouville fractional integral and differential operators of order     of a function 

       , and      are  defined, respectively,  by 

 

       
 

    
∫             

 

 

    

where           when    , we have             , and 

       
  

   
          

where               

Definition 2.2. (Pandey and Mishra (2017)) 

The left side Caputo’s of      derivative is defined as  

      
 

 
  

 

      
∫                  

 

 

      

where                   

Definition 2.3. (Pandey and Mishra (2017))  

 

The Mittage-Leffle function       with     for whole complex region is represented by  

 

      ∑
  

        

 

   

           

 

Definition 2.4. (Pandey and Mishra (2017))  

 

The ST is defined over the set of function   

  {    |             |    |    
| |
               [    } 
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by  

      [    ]  ∫         
 

 

                  

 

Definition 2.5. (Pandey and Mishra (2017))  

 

The ST of          is defined by 

 

 [  ]  ∫         
 

 

                    

 

Definition 2.6. (Mohebbi et al. (2014))  

 

The ST amplifies the coefficients of the power series function  

 

     ∑    
 

 

   

  

 

by applying the ST as a series function 

 

      [    ]  ∑      
  

 

   

 

 

Definition 2.7. (Pandey and Mishra (2017))  

 

The ST  [    ] of the Caputo fractional derivative is defined by 

 

 [       
 

 
 ]      [    ]  ∑      

   

   

           

where           

 

3.  Formulation of SDM for FTE 
 

We now consider the following FTE and hence illustrate the basic idea for the mention method, 

 

                  
         

  
 
                                                   

 

where                                                          are continuous functions. 

 

Applying the ST to both sides of Equation (3.1), we have 
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 [      ]

   
 ∑

        

       

   

   

  [        
                                           ]               

 

Using properties of the ST, we get 

 

  [      ]     ∑
        

       

   

   

     [      ]

      [        
                       

             ]                                                                                                                        
 

Hence, applying the inverse ST to the both sides of (3.3), we conclude that  

 

          [   ∑
        

       

   

   

     [      ]]

    [     [        
                                    ]]               

 

So that  

 

                 
                             [     [        

                                    ]]                           
 

where 

 

                                                      *   ∑
    (  )

       
   
        [      ]+                                               

 

For the linear term of (3.5), which is in the form of infinite series, we use 

 

       ∑        

 

   

                                                                                   

 

Substituting series (3.7) in (3.5), we get 

  

       ∑        

 

   

        

        [     [        
 ∑       

 

   

          ∑          

 

   

       ∑        

 

   

]]         
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For the recursive iteration system, by the computing of both sides of (3.8), we get the components of the 

approximation solution as the following, respectively: 

 

                

           [     [        
                                       ]]  

           [     [        
                                       ]]  

           [     [        
                                       ]]  

 
... 

             [     [        
                                       ]]                        

 

Thus, in view of relations given by (3.9), the components                                    … , are 

completely determined.  As a result, the solution        of FTE (3.1) in a series form can be easily  

obtained by  the series in (3.7). 

 

4.  Stability analysis 
 

We now produce the stability of our numerical scheme based on the SDM. For this, we consider a 

Banach space (  ‖ ‖) and      . Let              be a recursive technique and      be the 

set of fixed points of   at least containing one point, say       . We  assume that      and define 

     ‖            ‖  If           , then              is said to be H-stable.  

 

Theorem 4.1. (Atangana (2015)) 

 

Let    ‖ ‖) be a Banach space and       satisfy the following condition  

 

‖     ‖   ‖    ‖   ‖   ‖                                                              

 

for all                                                
 

Our Picard  -stability result is now given by the following result. 

 

Theorem 4.2. 

 

Let       be an operator defined as bellow 

 

 (       )     [     [        
                    ]       ]                            

 

       
                    ‖      ‖     ‖      ‖            ‖      ‖        

 



                                                                                                      
788                                                                             H. Khan et al. 

Then,   is Picard  -stable provided that              , and  the following relations  hold:  

(i)    ‖  
           

        ‖    ‖               ‖  

(ii)  ‖                   ‖    ‖               ‖, 

(iii)                  

 

Proof: 
 

In order to prove the existence of a fixed point of the operator   , we consider       , and 

 

              ‖                  ‖  

                         ‖   [     [        
                   ]       ]  

    [     [        
                   ]       ]  ‖                                       

                            ‖      ‖‖  
           

        ‖  ‖      ‖‖                   ‖ 

 ‖      ‖‖     ‖                ‖     ‖  ‖     ‖             

 

Consequently, with the help of Theorem 4.1, we can conclude that the operator   is Picard           
 

5.  Numerical examples 
 

We now apply the ST to the space-time FTE for checking the applicability and simplicity of the SDM. 

 

Example 5.1. (Pandey and Mishra (2017))  

 

Consider the one-dimensional space-time FTE  

 

          
         

  
 
                                                                   

 

                                 
 

with the initial and boundary conditions 

 

                    

                    

                        

                       

 

Applying the ST on the both side of (5.1), we have  

 

 [         
  

 
 ]    [  

                       ]                                                
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As we know the Caputo’s derivative can be applied as 

 

 [       
 

 
 ]      [    ]  ∑      

   

   

           

 

Then, we can write the left side according to the above definition. Applying the ST to the right side, we 

can get  

 

                           
 [      ]

   
 ∑

        

       

 

   

  [  
                        ]                                     

       
    [      ]

   
 

        

       
 

        

       
  [  

                        ]      

                           
 [      ]

   
 

   

   
 

        

       
  [  

                        ]      

                         
 [      ]

   
 

   

   
 

   

       
  [  

                        ]   

 

and 

 

                               [      ]     ,
   

   
 

   

       
-      [  

                        ]      

 

which implies 

 

                                  [      ]                [  
                        ]                          

 

Applying the inverse ST to the both sides of (5.4), we have 

 

          [         ]     [    [  
                        ]]                    

        
                                       [    [  

                        ]]                                      
 

We find          as below  

                                 
  

Next, when we use         to calculate           it follows that 

  

           [    [  
                           ]]     

                                   [    [  
 (        )     ( 

       )          ]]  

                                                 [    [        
                 

            ]]             
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From calculus, fractional order derivative of exponential function for this case is defined by 

 

                                                                           
                                                                                                                                                      

 

Combining (5.7) with (5.6), we have 

 

                                    [    [                            ]]     

                                             [    [        ]]    

                                             [         [   ]]    

                                            [             ] . 
 

So that 

  

                 [            ]  
 

As we know             . Then,     [  ]  
    

      
 .  Hence, we  can obtain 

 

            *
   

       
 

     

       
 +     

 

After that using          we get  

 

               [    [  
                           ]]     

 

so that  

 

           [    *  
  (   *

   

       
 

     

       
 + )      ( 

  *
   

       
 

     

       
 +)   

    *
   

       
 

     

       
 +   +]    

                         [        *  *
   

       
 

     

       
 +   +]      

 

which implies  that 

            *
   

       
 

     

       
 +     

 

 

In view of         to calculate        , we find  

 



                                                                               
AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 791                                                                                                 

exp x t

0.7

0.8

0.9

0.95

           [    [  
                           ]]    

 

                [    *  
  (    *

   

       
 

     

       
 +    )      (  

  *
   

       
 

     

       
 +)   

     *
   

       
 

     

       
 +  +]     

                     [        *  
   

       
 

     

       
    +]      

 

By the last estimate and similar mathematical operations, we can obtain  

 

             *
   

       
 

     

       
 +     

 
... 

In view of the obtained relations, the approximation solution is given by 

 

                                        . 

 

So that  

                   *
   

       
 

     

       
 +       *

   

       
 

     

       
 +   

     *
   

       
 

     

       
 +       

 

This implies 

       ∑    (
    

        
 

      

        
)  

 

   

 

 

 

 

 

 

 

 

Figure 1. Plot of approximate solutions        at different values of            and 

compression with exact solution          . 
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Example 5.2. (Kumar (2014)) 

 

We consider the following homogenous space FTE 

 

    

    
 

   

   
  

  

  
                                                                  

subjected to the following initial and boundary conditions 

                                

                                            

The exact solution of FDE (5.8)  is                             
 

Applying the ST to the both sides of (5.8), we have 

          *
 
  

 

    +   *
 
 
 

 
 
 
    

  
   +                                                                                                                              

 [      ]

   
 

        

       
 

        

       
  *

   

   
  

  

  
   +                                                                     

 [      ]     
        

   
    

 

       
      *

   

   
  

  

  
   +                                             

            [      ]                    *
   

   
  

  

  
   +                                                             

Applying the inverse ST to the both sides of Equation (5.8), we get 

                                         [             ]     *    [
   

   
  

  

  
   ]+                        

 For simplifying, if we put        [            ] in (5.11), then  we have 

               [    *
   

   
  

  

  
   +]                                                     

By help of the initial approximation                                        we can write 
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Using         to get        , it is obvious  that 

  

                      
[     [

    

   
  

   

  
    ]]      

           [    *
  

   
             

 

  

                        +]      

                     [    [       ]]      

                         [          ]      

                  *
   

       
 

      

       
+    

Using         to get          we get 

                   *    [
  

   
      

 

  
           ]+, 

           [    *
  

   
( *

   

       
 

      

       
+)   

 

  

( *
   

       
 

      

       
+)

  ( *
   

       
 

      

       
+) +]  

                  *
   

       
 

      

       
+    

Using         to get        , we find  

                [    *
  

   
      

 

  

           +] 
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                   [    *
  

   
(  *

   

       
 

      

       
+)   

 

  

(  *
   

       
 

      

       
+)

  (  *
   

       
 

      

       
+) +]  

                 *
   

       
 

      

       
+  

 
... 

                *
    

        
 

       

        
+                                                                                                  

 

If we use n=0, 1, 2, … , and     , then we have the solution 

            *     
     

  
 

     

  
 

     

  
 

     

  
   

     

  
  +                                       

                                                                                                                                              

 

 
Figure 2. Plot of approximate solutions        at different values of           . 

 

Example 5.3. (Pandey and  Mishra (2017) 

 

We consider the following one-dimensional space-time-FTE  
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with initial and boundary conditions 

                                 

                                  

Applying the ST to the both sides of Equation (5.15), we have 

      [         
  

 
 ]   [  

                                  ]                                      

 [      ]

   
 

        

       
 

        

       
  [  

                                  ]                  

 [      ]     
 

   
    

   

       
      [  

                                  ]         

               [        ]       [  
  

                        ]           

   [      ]                   [    ]       [  
                         ]                    

Applying the inverse ST  to the both sides of the Equation (5.15), we get 

          [                 [     ] ]     [    [  
                         ]]            

For simplifying, we put        [                 [     ] ]  Substituting this relation in Equation 

(5.17), we get  

                  [    [  
                         ]]                             

By means of  the initial approximation                                 , we obtain 

          ∑
       

      

 

   

              

When we use          to get          it follows that  

                    
[    [  

 
                           ]]     
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[    [  

 
(  ∑

       

      

 

   

)     (  ∑
       

      

 

   

)     ∑
       

      

 

   

  ]]     

                    
[    [  

 
                

            ]]     

                   [    [                     ]]      

                          [       ]                                     

This relation implies that  

                   *
     

       
+                                                        

                 [    [  
                              ]]                                   

     [    *  
 (     *

     

       
+ )      (     *

     

       
+ )   (     *

     

       
+ ) +] 

               [    *  *
     

       
+   

          *
     

       
+     

          *
     

       
+    +]     

    [    *      *
     

       
+        *

     

       
+       *

     

       
+    +]    

    [    *     *
     

       
+  +]                                                                                          

     [            [*
     

       
+  ]]                                                                                          

Hence, we can conclude that  

                   *
     

       
+  
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exp x t

0.7

0.8

0.9

0.95

                [    [  
                              ]]  

              [    *  
 (     *

     

       
+)      (   

  *
     

       
+)    (     *

     

       
+)+]  

                    *
     

       
+    

 
... 

In view of the above discussion, the approximation solution is given by 

                                               

                               *
     

       
+          *

     

       
+          *

     

       
+      

       ∑
       

      

 

   

  *
     

       
+       ∑

       

      

 

   

  *
     

       
+   

    ∑
       

      

 

   

  *
     

       
+      

which implies  

               ∑                                                                 

 

   

 

Hence, the desired exact solution is given by  

                                                                                                                                                        
 

Figure 3. Plot for approximate solutions of        at different values of            and 

comparison with exact solution       . 
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Example 5.4. (Hashemi and Baleanu (2016))  

Consider the following nonlinear space-fractional telegraph equation 

    

    
 

   

   
  

  

  
                                                                           

subjected to the following initial and boundary conditions 

                       

                                                                   

Applying the ST to both sides of Equation (5.21), we have 

           *
 
  

 

    +   *
 
 
 

 
 
 
    

  
                +                                                                

 [      ]

   
 

        

       
 

        

       
  *

   

   
  

  

  
                +                                        

 [      ]     
  

   
    

  

       
      *

   

   
  

  

  
                +                        

 [      ]           [             ]       *
   

   
  

  

  
   +                

Now applying the Sumudu inverse transform to both sides of Equation (5.23), we get 

          [         [             ] ]     [    *
   

   
  

  

  
   +]                     

We can write relation (5.24) in series sense as follow, 

∑        

 

   

   [         [             ] ]                                                                                            

    [    [  
 ∑       

 

   

    ∑       

 

   

 ∑       

 

   

]]                                     
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When         in (5.25) is nonlinear term which can be calculated by Adomian polynomial; 

        
 

  

  

   
[ ∑         

 

   

  ]

   

                

             

Using         to get        , and the others, respectively, so that  

         
         

√   
      

        
           

√    
    

        
    

 
      

√    
     

        
           

√    
     

 
... 

Since 

                                                          

then 

          
         

√   
 

           

√    
 

           

√    
 

           

√    
   

           

√    
                 

If ® = 1 in (5.27), then the closed form is  

            . 
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Figure 4. Plot of approximate solutions        at different value of            

 

6.  Conclusion 
 

In recent decades a large number of scientists have shown their contributions in the analytical solutions 

of fractional order models which have attracted our attention toward the subject area. Therefore, we 

considered the analytical solution of space FTE via SDM. The technique we have produced in the 

Section 3, can be used for many classes of fractional order models including linear as well nonlinear. In 

the present work we have given the application of the scheme to a well-known linear model called the 

FTE. Figures (1,2,3) shows the behavior of the approximate solution U(x, t) with the fixed time       

and       in examples for different fraction of FTE as                                       and 

    with the compression of exact solution that show the accuracy of our work and method. We have 

also examined the stability of the scheme analytical which shows the convergence of the scheme. Our 

technique is very simple and more power than the available methods in the literature. We suggest the 

researchers for its application to nonlinear models. 
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