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Abstract 
 

The objective of this paper is to analyze an               queueing model with multiple 

vacation, closedown, essential and optional repair. Whenever the queue size is less than  , the 

server starts closedown and then goes to multiple vacation. This process continues until at least   

customer is waiting in the queue. Breakdown may occur with probability   when the server is 

busy. After finishing a batch of service, if the server gets breakdown with a probability  , the 

server will be sent for repair. After the completion of the first essential repair, the server is sent 

to the second optional repair with probability  . After repair (first or second) or if there is no 

breakdown with probability    , the server resumes closedown if less than ` ' customers are 

waiting. Otherwise, the server starts the service under the general bulk service rule. Using 

supplementary variable technique, the probability generating function of the queue size at an 

arbitrary time is obtained for the steady-state case. Also some performance measures and cost 

model are derived. Numerical illustrations are presented to visualize the effect of various system 

parameters.  
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1. Introduction 
 

The major applications of vacation queueing models are in computer and communication 

systems, manufacturing systems, service systems, etc. In the vacation queueing model, the server 

is utilized for some other secondary jobs whenever the system becomes empty. Queueing models 
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with vacations have been studied by many researchers for the past few decades. But a few 

authors only have discussed about the repair or renovation due to break down of the service 

station. Practically, in many cases, the renovation of the service station due to breakdown is an 

essential one. Such breakdowns affect the system performance such as the queue length, busy 

period of the server and the waiting time of the customers 

 

A literature survey on vacation queueing models can be found in Doshi (1986) and Takagi 

(1991) which include some applications. Lee (1991) developed a systematic procedure to 

calculate the system size probabilities for a bulk queueing model. Krishna Reddy et al. (1998) 

considered an               queueing model with multiple vacations, setup times and N 

policy. They derived the steady-state system size distribution, cost model, expected length of idle 

and busy period. Arumuganathan and Jeyakumar (2005) obtained the probability generating 

function of queue length distribution at an arbitrary time epoch and a cost model for the      
         queueing model. 

 

Arumuganathan and Judeth Malliga (2006) carried over a steady-state analysis of a bulk 

queueing model with repair of service station and setup time. Also they derived various 

performance measures and performed cost analysis. Avi-Itzhak and Naor (1963) analyzed five 

different single server queueing models and derived the expected queue lengths for those models. 

Also they assumed arbitrary service and repair times. Choudhury and Ke (2012) considered an 

         queueing model in which they derived the steady-state system size probabilities. Also 

they have obtained various performance measures and reliability indices of the model. Guptha et 

al. (2011) investigated          queueing model with server subject to breakdown and repair. 

Jain and Agrawal (2009) analyzed an          queueing model with multiple types of server 

breakdown, unreliable server and N-policy. They obtained the mean queue length and other 

system characteristics using Matrix geometric method.  

 

Ke (2007) investigated an          queueing model with vacation policies, breakdown and 

startup/closedown times where the vacation times, startup times, closedown times and repair 

times are generally distributed. Li et al. (1997) considered an       queueing model with 

server breakdowns and Bernoulli vacations. They derived the time-dependent system size 

probabilities and reliability measures using supplementary variable method. Madan et al. (2003) 

derived probability generating functions of various system characteristics for two             
  queueing models where the service station undergoes random breakdowns. Moreno (2009) 

presented a steady-state analysis of an Geo/G/1 queueing model with multiple vacation and 

setup-closedown times where he has derived the joint generating function of the server state and 

the system length using supplementary variable technique. Also he studied the expected lengths 

of busy periods, expected waiting time in the queue and expected waiting time in the system.  

 

Tadj (2003) analyzed a bilevel bulk queueing system under T policy and derived various 

performance measures. Takine and Sengupta (1997) analyzed the single server queueing models 

where the system is subject to service interruptions. They also characterized the waiting time 

distribution and queue length distribution of this model. Wang et al. (2005) derived the 

approximate results for the steady-state probability distributions of the queue length for a single 

unreliable server       queueing model using maximum entropy principle and performed a 

comparative analysis of these approximate results with the available exact results. Wang et al. 
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(2007) considered an unreliable       queueing model with general service, repair and startup 

times. They obtained the cost function to determine the optimum value of N at a minimum cost 

and various performance measures.  
 

Wang et al. (2009) investigated an       queueing model with server breakdown, general startup times 

and T policy where the server is turned on after a fixed length of time   repeatedly until an arrival occurs. 

Haghighi and Mishev (2013) investigated the three stage hiring model                           

as a tandem queueing process with batch arrivals and Erlang Phase- type selection. They derived the 

generation function and the mean of the number of applications using decomposition of the system. 

Jeyakumar and Senthilnathan (2014) derived the PGF of queue size for the               queueing 

system with setup time, closedown time and multiple vacation where the batch of customers in service 

would not be getting affected if breakdown occurs.  

Choudhury and Deka (2015) derived the system size distribution for the          queue with unreliable 

server, Bernoulli vacation and two consecutive phases of service for the stationary case. Ayyappan and 

Shyamala (2016) derived the PGF of an          queueing model with feedback, random breakdowns, 

Bernoulli schedule server vacation and random setup time for both steady state and transient cases. 

Jeyakumar and Senthilnathan (2017) analyzed a single server bulk queueing model where the server gets 

breakdown and resumes multiple working vacation. They obtained the PGF of queue length at an 

arbitrary epoch for the steady state case. Madan and Malalla (2017) studied a batch arrival queue in which 

the server provides the second optional service on customer's request, the server may breakdown at 

random time and delayed repair. They also derived the queue size distribution of the system and some 

performance measures. 

The rest of the paper is organized as follows. In Section 2, the batch arrival bulk service queueing model 

with multiple vacation, closedown, essential and optional repair is described and the system equations are 

presented. The queue size distribution of this model is derived in section 3. In Section 4, the probability 

generating function of queue size is obtained. In Section 5, various performance measures are computed. 

In Section 6, the cost analysis is carried over. In Section 7, the numerical illustrations are presented to 

analyze the influence of system parameters. In Section 8, this research work is concluded with future 

proposed work.  

2. Model Description 
 

In this section, the mathematical model for bulk service queueing system with multiple 

vacations, closedown, essential and optional repair is considered. Customers arrive in batches 

according to compound Poisson process. At the service completion epoch, if the server is 

breakdown with probability , then the repair of service station will be considered. After 

completing the regular repair, to increase the efficiency of service station, optional repair with 

probability   is considered. After completing the repair of service station or if there is no 

breakdown of the server with probability (1 )  or if no optional repair of the server with 

probability (1 ) , if the queue length is  , where a  , then the server resumes closedown 

work. After that, the server leaves for multiple vacation of random length. After a vacation, when 

the server returns, if the queue length is less than ' a ', he leaves for another vacation and so on, 
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until he finds ' a ' customers in the queue. After a vacation, if the server finds at least ' a ' 

customers waiting for service, say  , then he prefers to serve a batch of size , ( ).a b    The 

probability generating function of queue size at an arbitrary time and some performance 

measures are derived. The schematic diagram for the model under consideration is depicted in 

Figure 1.       

 

  
Figure  1: Schematic Diagram   

 

2.1. Practical application of the proposed model 

 

Jaw crusher (server) is used for crushing stones (customers). A minimum load (threshold `a') is 

required to start the Jaw Crusher and can accommodate a finite capacity (threshold `b'). The Jaw 

crusher usually has two jaws. One is fixed jaw and the other is a movable jaw driven by a 

flywheel. The movable jaw is attached to the flywheel with bearing. The Groove Block 

Assembly (GBA) consists of Toggle and Drawback rod. The GBA is connected with movable 

jaw and toggle. The drawback rod is used to retain the moving rod into its original position. The 

flywheel has an eccentric shaft connected with a bearing. Stones of bigger size are dropped into 

the hooper. From the hooper, they enter into the crusher. The stones are dropped between 

movable and fixed jaws where they are broken into pieces. Because of heavy load, they are 

trapped between the jaws and get jammed.  

 

In this situation, the toggle and drawback rod exert more force and become damaged 

(breakdown). The damaged toggle and drawback rod are repaired by welding or coupling the 

broken pieces of rod (essential repair). The bearings may also be replaced (optional) along with 

the welding/coupling of broken rod (optional repair) in order to increase the performance of the 

Jaw Crusher. When the stones are not available to crush, the motor is switched off (closedown) 

and the Jaw Crusher is used for maintenance works like lubricating the drawback rod and other 

frictional parts (vacation). 

 

2.2. Notations and system equations 

 

The following notations are used in this paper.  
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  - Arrival rate, 

X  - Group size random variable, 

 kg Pr X k  , 

( )X z  - Probability generating function (PGF) of X .  

 

Here, 1(.), (.), (.), (.)S V C R  and 2 (.)R  represent the cumulative distribution function (CDF) of 

service time, vacation time, closedown time, first essential repair time and second optional repair 

time and their corresponding probability density functions are 1( ), ( ), ( ), ( )s x v x c x r x  and 2 ( )r x  

respectively. 0 0 0 0

1( ), ( ), ( ), ( )S t V t C t R t  and 0

2 ( )R t  represent the remaining service time of a batch, 

vacation time, closedown time, first essential repair time and second optional repair time at time 

t  respectively. 
1( ), ( ), ( ), ( )S V C R     and 

2 ( )R   represent the Laplace-Stieltjes transform of 

1, , ,S V C R  and 2R  respectively. 

 

Define: 

  

     ( ) (0)[1] 2 3 4 ,if the server is on (busy)[closedown] vacationY t   

              
 first essential  repair second optional repair ,  

( )Z t j , if the server is on thj  vacation, 

( )sN t  = Number of customers in the service at time ,t  

( )qN t  = Number of customers in the queue at time .t  

 

The supplementary variables 0 0 0 0

1( ), ( ), ( ), ( )S t V t C t R t  and 0

2 ( )R t  are introduced in order to 

obtain the bivariate Markov process ( ), ( )N t Y t , where  ( ) ( ) ( )q sN t N t N t  .  

Define the probabilities as, 

 

 0

, ( , ) ( ) , ( ) , ( ) , ( ) 0 , , 0,i j s qP x t dt P N t i N t j x S t x dx Y t a i b j           

 0( , ) ( ) , ( ) , ( ) 1 , 0,n qC x t dt P N t n x C t x dx Y t n        

 0

, ( , ) ( ) , ( ) , ( ) 2, ( ) , 0, 1,j n qQ x t dt P N t n x V t x dx Y t Z t j n j          

 (1) 0

1( , ) ( ) , ( ) , ( ) 3 , 0,n qR x t dt P N t n x R t x dx Y t n        

 (2) 0

2( , ) ( ) , ( ) , ( ) 4 , 0.n qR x t dt P N t n x R t x dx Y t n      
 

 

The supplementary variable technique was introduced by Cox (1965). Using supplementary 

variables one can convert non-Markovian models into Markovian models.  

 

The steady-state system size equations are obtained as follows:  

 

,0 ,0 , ,

1

( ) ( ) (1 ) (0) ( ) (0) ( )
b

i i m i l i

m a l

P x P x P s x Q s x 


 

        
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(1) (2)(1 ) (0) ( ) (0) ( ), ,i iR s x R s x a i b                (1) 

, , ,

1

( ) ( ) ( ) , 1, 1,
j

i j i j i j k k

k

P x P x P x g a i b j 



                   (2) 

, , , ,

1

( ) ( ) (1 ) (0) ( ) (0) ( )
b

b j b j m b j l b j

m a l

P x P x P s x Q s x 


 

 

        

                     

(1) (2)

,

1

( ) (1 ) (0) ( ) (0) ( ), 1,
j

b j k k b j b j

k

P x g R s x R s x j   



              (3) 

,

1

( ) ( ) (1 ) (0) ( ) ( )
b n

n n m n n k k

m a k

C x C x P c x C x g  

 

        

                   
(1) (2)(1 ) (0) ( ) (0) ( ), 1,n nR c x R c x n a                 (4) 

1

( ) ( ) ( ) , ,
n

n n n k k

k

C x C x C x g n a 



                  (5) 

1,0 1,0 0( ) ( ) (0) ( ),Q x Q x C v x                  (6) 

1, 1, 1,

1

( ) ( ) (0) ( ) ( ) , 1,  
n

n n n n k k

k

Q x Q x C v x Q x g n 



     
           

(7) 

,0 ,0 1,0( ) ( ) (0) ( ), 2,j j jQ x Q x Q v x j 
                  (8) 

, , 1, ,

1

( ) ( ) (0) ( ) ( ) , 2, 1 ,
n

j n j n j n j n k k

k

Q x Q x Q v x Q x g j n a  



                   (9) 

, , ,

1

( ) ( ) ( ) , 2, ,
n

j n j n j n k k

k

Q x Q x Q x g j n a 



                 (10) 

(1) (1)

0 0 ,0 1( ) ( ) (0) ( ),
b

m

m a

R x R x P r x 



    
           

 (11) 

(1) (1) (1)

, 1

1

( ) ( ) (0) ( ) ( ) , 1,
b n

n n m n n k k

m a k

R x R x P r x R x g n  



 

      
        

 (12) 

(2) (2) (1)

0 0 0 2( ) ( ) (0) ( ),R x R x R r x                  (13) 

(2) (2) (1) (2)

2

1

( ) ( ) (0) ( ) ( ) , 1.
n

n n n n k k

k

R x R x R r x R x g n  





               (14) 

 

3.  Queue Size Distributions 
 

The Laplace-Stieltjes transform of 
(1) (2)

, ,( ), ( ), ( ), ( ), ( )i j n j nP x C x Q x R x R x  are defined as follows: 

 

, , , ,

0 0

( ) ( ) , ( ) ( ) ,x x

i j i j j n j nP e P x dx Q e Q x dx  
 

      

(1) (1) (2) (2)

0 0 0

( ) ( ) , ( ) ( ) , ( ) ( ) .x x x

n n n n n nC e C x dx R e R x dx R e R x dx    
  

         
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Taking Laplace-Stieltjes transform from (1) to (14), we get 

 

,0 ,0 ,0 , ,

1

( ) (0) ( ) ( ) (1 ) (0) (0)[
b

i i i m i l i

m a l

P P P S P Q     


 

       

                                    
(1) (2)(1 ) (0) (0) , ,]i iR R a i b                (15) 

, , , ,

1

( ) (0) ( ) ( ) ,
j

i j i j i j i j k k

k

P P P P g     



              (16) 

, , , , ,

1

( ) (0) ( ) ( ) ( ) (1 ) (0)[
j b

b j b j b j b j k k m b j

k m a

P P P P g S P        

 

       

                                     

(1) (2)

,

1

(0) (1 ) (0) (0) , 1,]l b j b j b j

l

Q R R j


  



              (17) 

,

1

( ) (0) ( ) ( ) ( ) (1 ) (0)[
n b

n n n n k k m n

k m a

C C C C g C P       

 

       

                                  
(1) (2)(1 ) (0) (0) , 1,]n nR R n a                (18) 

1

( ) (0) ( ) ( ) , ,
n

n n n n k k

k

C C C C g n a     



               (19) 

1,0 1,0 1,0 0( ) (0) ( ) ( ) (0),Q Q Q V C                   (20) 

1, 1, 1, 1,

1

( ) (0) ( ) ( ) (0) ( ) , 1,
n

n n n n n k k

k

Q Q Q V C Q g n      



              (21) 

,0 ,0 ,0 1,0( ) (0) ( ) ( ) (0),j j j jQ Q Q V Q                    (22) 

, , , 1, ,

1

( ) (0) ( ) ( ) (0) ( ) , 2, 1,
n

j n j n j n j n j n k k

k

Q Q Q V Q Q g j n a       



              (23) 

, , , ,

1

( ) (0) ( ) ( ) , 2, ,
n

j n j n j n j n k k

k

Q Q Q Q g j n a     



               (24) 

(1) (1) (1)

0 0 0 1 ,0( ) (0) ( ) ( ) (0) ,
b

m

m a

R R R R P     


 
    

 
            (25) 

(1) (1) (1) (1)

1 ,

1

( ) (0) ( ) ( ) (0) ( ) , 1,
b n

n n n m n n k k

m a k

R R R R P R g n       

 

 
     

 
          (26) 

(2) (2) (2) (1)

0 0 0 2 0( ) (0) ( ) ( ) (0),R R R R R                    (27) 

(2) (2) (2) (1) (2)

2

1

( ) (0) ( ) ( ) (0) ( ) , 1.
n

n n n n n k k

k

R R R R R R g n       



              (28) 

 

To find the probability generating function (PGF) of queue size, we define the following PGFs: 

 

0 0

( , ) ( ) , ( ,0) (0) , ,j j

i ij i ij

j j

P z P z P z P z a i b 
 

 

      
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0 0

( , ) ( ) , ( ,0) (0) , 1,j j

l lj l lj

j j

Q z Q z Q z Q z l 
 

 

     

(1) (1) (1) (1)

0 0

( , ) ( ) , ( ,0) (0) ,n n

n n

n n

R z R z R z R z 
 

 

    

(2) (2) (2) (2)

0 0

( , ) ( ) , ( ,0) ,(0)n n

n n

n n

R z R z R z R z 
 

 

    

0 0

( , ) ( ) , ( ,0) (0) .n n

n n

n n

C z C z C z C z 
 

 

               (29) 

 

By multiplying the equations from (15) to (28) by suitable power of nz  and summing over n ,

0 · n <1 and using (29),  

 

1 1( ( )) ( , ) ( ,0) ( ,0) ( ),X z Q z Q z C z V                  (30) 

1

1,

0

( ( )) ( , ) ( ,0) ( ) (0) , 2,
a

n

j j j n

n

X z Q z Q z V Q z j    






              (31) 

1

,

0

( ( )) ( , ) ( ,0) ( ) (1 ) (0)[
a b

n

m n

n m a

X z C z C z C P z     


 

       

                                                 

1 1
(1) (2)

0 0

(1 ) (0) (0) ,]
a a

n n

n n

n n

R z R z
 

 

   
        

(32) 

(1) (1)

1( ( )) ( , ) ( ,0) ( ) ( ,0),
b

m

m a

X z R z R z R P z     


              (33) 

(2) (2) (1)

2( ( )) ( , ) ( ,0) ( ) ( ,0),X z R z R z R R z                  (34) 

,( ( )) ( , ) ( ,0) ( ) (1 ) (0)[
b

i i m i

m a

X z P z P z S P     


       

                                                  

(1) (2)

,

1

(0) (1 ) (0) (0) ,]l i i i

l

Q R R




            (35) 

1

,

0

( ( )) ( , ) ( ,0) ( ) (1 ) ( ,0) (1 ) (0)[
b b b

j

b b m m j

m a j m a

X z P z P z S P z P z      


  

       
        

                                                  

1
(1)

,

1 1 0

( ,0) (0) (1 ) ( ,0)
b

j

l l j

l l j

Q z Q z R z
  

  

      

                                                  

1 1
(1) (2) (2)

0 0

(1 ) (0) ( ,0) (0) .]
b b

n n

n n

n n

R z R z R z
 

 

            (36) 

 

By Substituting ( )X z     in (30) to (36), we get 

 

1( ,0) ( ( )) ( ,0),Q z V X z C z                (37) 

1

1,

0

( ,0) ( ( )) (0) , 2,
a

n

j j n

n

Q z V X z Q z j 






              (38) 
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1 1
(1)

,

0 0

( ,0) ( ( )) (1 ) (0) (1 ) (0)[
a b a

n n

m n n

n m a n

C z C X z P z R z   
 

  

       

                   

1
(2)

0

(0) ,]
a

n

n

n

R z




              (39) 

(1)

1( ,0) ( ( )) ( ,0),
b

m

m a

R z R X z P z  


                (40) 

(2) (1)

2( ,0) ( ( )) ( ,0),R z R X z R z                 (41) 

(1) (2)

, ,

1

( ,0) ( ( )) (1 ) (0) (0) (1 ) (0) (0) ,[ ]
b

i m i l i i i

m a l

P z S X z P Q R R   


 

               (42) 

1

,

0

( ( ))
( ,0) (1 ) ( ,0) (1 ) (0)[

b b b
j

b m m jb
m a j m a

S X z
P z P z P z

z

 
 



  


      

                    

1 1
(1) (1)

,

1 1 0 0

( ,0) (0) (1 ) ( ,0) (1 ) (0)
b b

j n

l l j n

l l j n

Q z Q z R z R z 
   

   

         

                    

1
(2) (2)

0

( ,0) (0) .]
b

n

n

n

R z R z




              (43) 

 

Solving for ( ,0)bP z , we get 

 

1

( )
( ,0) ,

(z)
b b

f z
P z

z f

  

              (44) 

 

where 

 

1 1(z) ( ( )) (1 ) (1 ) ( ( )) ( ( ))[[f S X z R X z R X z                  

             
1 1

2 ,

0 1

( ( )) ( ,0) (1 ) (0) ( ,0)]
b b b

j

m m j l

m a j m a l

R X z P z P z Q z  
  

   

        

             
1 1 1

(1) (2)

,

1 0 0 0

(0) (1 ) (0) (0) ]
b b b

j n n

l j n n

l j n n

Q z R z R z
   

   

     
 

and 

 

 1 1 1 2(z) ( ( )) (1 ) (1 ) ( ( )) ( ( )) ( ( )) .f S X z R X z R X z R X z                     

 

Let 

 

(1) (1) (2) (2)

, ,

1

(0), (0), (0), (0),
b

i m i i l i i i i i

m a l

p P q Q r R r R


 

      

(1) (2) (1) (2)(1 ) (1 ) , (1 ) (1 ) .i i i i i i i i ik p r r q g p r r                
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Using the equations (37) to (44) in (30) to (36), after simplification, we get 

 

1

[ ( ( )) ( )] ( ,0)
( , ) ,

( ( ))

V X z V C z
Q z

X z

  


  

 


 
           (45) 

1

1,

0

[ ( ( )) ( )] (0)

( , ) ,
( ( ))

a
n

j n

n
j

V X z V Q z

Q z
X z

  


  







 


 


          (46) 

 
1

(2) ( ) (1)

0

[ ( ( )) ( )] (1 ) (1 )

( , ) ,
( ( ))

a
n n n

n n n

n

C X z C p z r z r z

C z
X z

    


  





 
      

 
 


        (47) 

1 1
(1)

[ ( ( )) ( )] ( ,0)

( , ) ,
( ( ))

b

m

m a

R X z R P z

R z
X z

   


  



 


 


           (48) 

(1)
(2) 2 2[ ( ( )) ( )] ( ,0)

( , ) ,
( ( ))

R X z R R z
R z

X z

   


  

 


 
           (49) 

(1) (2)[ ( ( )) ( )] (1 ) (1 )
( , ) ,

( ( ))

i i i i

i

S X z S p r r q
P z

X z

    


  

        
 

         (50) 

1

[ ( ( )) ( )] ( )
( , ) ,

( ( )) (z)[ ]
b

b

S X z S U z
P z

X z z f

  


  

 

   
 

            (51) 

 

where 

 

1 1( ) (1 ) (1 ) ( ( )) ( ( ))[[U z R X z R X z               

               

1 1

2 ,

0 1

( ( )) ( ,0) (1 ) (0) ( ,0)]
b b b

j

m m j l

m a j m a l

R X z P z P z Q z  
  

   

        

               

1 1 1
(1) (2)

,

1 0 0 0

(0) (1 ) (0) (0) .]
b b b

j n n

l j n n

l j n n

Q z R z R z
   

   

     
 

 

4.  Probability generating function of queue size 

 
In this section, the PGF, ( )P z  of the queue size at an arbitrary time epoch is derived.  

 

4.1. PGF of queue size at an arbitrary time epoch 

 

If ( )P z  be the PGF of the queue size at an arbitrary time epoch, then  

 
1

(1) (2)

1

( ) ( ,0) ( ,0) ( ,0) ( ,0) ( ,0) ( ,0).
b

m b l

m a l

P z P z P z C z Q z R z R z
 

 

      
  

     (52) 
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By substituting 0   on the equations from (45) to (51), then the equation (52) becomes 

 

1

g( )
( ) ,

( ( )) (z)[ ]b

z
P z

X z z f 

   
 

            (53) 

 

where 

 

1g(z) (1 ) ( ( )) ( ( )) ( ( ))S X z S X z R X z            
 

                   
1

21 ( ( ( )) 1) 1 ( ) ( 1) ( ( ))
b

b n b

n

m a

R X z z z k z V X z    




              

                   
1 1

0 0

( ( )) 1 ( 1)( ( ( )) 1) .
a a

n b n

n n

n n

C X z g z z V X z q z   
 

 

         

 

Equation (53) has a b  unknowns 1 1 0 1 1, ,..., , , ,...,a a b ak k k g g g   , and 0 1 1, ,..., aq q q  , we develop 

the following theorem to express iq  in terms of ig  in such a way that numerator has only b  

constants. Now equation (53) gives the PGF of the number of customers involving only ' b ' 

unknowns.  

 

By Rouche's theorem of complex variables, it can be proved that 

 

1 1 2( ( )) (1 ) (1 ) ( ( )) ( ( )) ( ( ))bz S X z R X z R X z R X z                       
 

has 1b   zeros inside the unit circle | | 1z   and one on the unit circle | | 1z  . Since ( )P z  is 

analytic within and on the unit circle, the numerator must vanish at these point, which gives b  

equations in b  unknowns. These equations can be solved by any suitable numerical technique.  

 

4.2. Steady-state condition  

 

The probability generating function has to satisfy P(1) = 1. In order to satisfy this condition, 

apply L' Hospital rule and equating the expression to 1. Consecutively,  

 

 
1 1 1

1 2

0 0

( ) ( ) ( ) ( ) ( ( ) ( )) ( )
b a a

n n n

n a n n

E S E R E R b n k b E V E C g bE V q 
  

  

         

                                 1 2( ) ( ) ( ) ( ) ( ) ( ),b E X E S E X E R E X E R              (54) 

 

since , ,n n nk g q  are probabilities. Thus, (1) 1P   is satisfied if and only if 

 

1 1 2( ( )) (1 ) (1 ) ( ( )) ( ( )) ( ( )) 0[ ]bz S X z R X z R X z R X z                     , 
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 if  1 2( ) ( ) ( ) ( ) / .E X E S E R E R b       Thus, 1   is the condition to be satisfied for the 

existence of steady state for the model under consideration.  

 

Theorem 1. Let iq  can be expressed in terms of ig  as  

 

0

, 0,1,2  ., , 1.. ,
n

n i n i

i

q L g n a



                (55) 

 

where  

1

0

 ..., 1,2,3, , 1,
1

n

n i n i

i
n

h L

L n a











  



            (56) 

with  

0 0
0

0 0

, ,
1

n

n i n i

i

h L
 

 






 


              (57) 

 

where i 's and i 's are the probabilities of the i  customers arrive during vacation and closedown 

time respectively. 

 

Proof:  

 

From equations (37) and (38), we have  

 

1 1
(2)

0 0 0

( ( )) ( ( )) (1 )[
a a

n n n

n n n

n n n

q z V X z C X z p z r z    
  

  

        

                    

1 1
(1)

0 0

(1 ) ( ( ))]
a a

n n

n n

n n

r z V X z q z  
 

 

      

                

1
(2) (1)

0 0 0 0

(1 ) (1 )
a

n i n n

n i n n n n

n i n n

z z p r r z q z   
   

   

 
        

 
     

                

1 1

0 0 0 0

.
a a

n i n n

n i n n

n i n n

z z g z q z 
   

   

 
  

 
              (58) 

 

Equating the coefficient of , 0,1,2,  .. ,. 1,nz n a   on both sides of equation (1), we get 

 
1

0

0 0 0

,
n jn n

n i n i j j n i i n

j i i

q g q q   
 

  

  

     
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1

0 0 0

0

.
1

n jn n

i n i j j n i i

j i i

n

g q

q

  



 

  

  






 

 
 

Coefficient of ng  in nq  is  

 

0 0
0

01
L

 





 (say). 

 

Coefficient of 1ng   in nq  is  

 

0 0
0 1 1 0 1

0

0

( )
1

.
1

 
    





 
   

 


 

 

1 1 0
1

01

h L
L









 (say), 

 

where  

 

1 0 1 1 0.h     
 

 

By mathematical induction 

 

1

0

 ..., 0,1,2, , 1,
1

n

n i n i

i
n

h L

L n a











  



 

0 0
0

00

, .
1

n

n i n i

i

L h
 

 






 



 

 

4.3. Particular cases 

 

Case (i):  
 

When there is no server breakdown (i.e.) essential and optional repair is zero, the equation (53) 

becomes  

 

1( )
( )

( ( ))( ( ( )))b

g z
P z

X z z S X z   


   
, 

 

where 
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1 1

1

0

g (z) ( ( ( )) 1) ( ) ( 1)( ( ( )) ( ( )) 1)
b a

b n b n

n n

n a n

S X z z z p z V X z C X z p z     
 

 

                          

                    
1

0

( 1)( ( ( )) 1) ,
a

b n

n

n

z V X z q z 




      

  

which coincides with (46) of Arumuganathan and Jeyakumar (2005) if the set up time is zero and 

   . 

 

Case (ii):  
 

When the closedown time is zero and there is no server breakdown, the equation (53) reduces 

into  

 
1 1 1

0 0

( ( ( )) 1) ( ) ( 1)( ( ( )) 1)

( ) ,
( ( ))( ( ( )))

b a a
b n b n n

n n n

n a n n

b

S X z z z p z V X z p z z

P z
X z z S X

q

z

   

   

  

  

  
        

  
   

  

 
 

which coincides with (41) of Reddy et al. (1998) if the set up time is zero and    .  

 

5. Performance measures 

 
In this section, the expressions for various performance measures like expected length of busy 

period, expected length idle period are derived explicitly. The effect of various system 

parameters in these expressions are analyzed numerically in the next section. 

 

5.1. Expected length of busy period 

 

Theorem 2.  

 

Let B be the busy period random variable. Then the expected length of busy period is  

 

1

0

( )
( ) ,

a

n

n

E T
E B

g







                (59) 

where 

 

1 2( ) ( ) ( ) ( ).E T E S E R E R   
 

 

Proof:  

 

Let T be the residence time that the server is rendering service or under repair.  
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1 2( ) ( ) ( ) ( ).E T E S E R E R   
 

 

Define a random variable 1J  as  

 

1

if theserver finds less than ' 'customersafter first service,

if theserver findsatleast 'a'customersafter first servi

0,

ce1, .

a
J


 


 

       

  
E(B)= E(B/J_{1}=0)P(J_{1}=0)+E(B/J_{1}=1)P(J_{1}=1),  

                    
 1 1( ) ( 0) ( ) ( ) ( 1),E T P J E T E B P J    

 

 

where ( )E T  is the mean service time. 

 

Solving for ( )E B , we get 

 

1

1

0

( ) ( )
( ) .

( 0)
a

n

n

E T E T
E B

P J
g





 



 

 

5.2. Expected length of idle period 

 

Theorem 3.  

 

Let I be the idle period random variable. Then the expected length of idle period is  

 

 1( ) ( ) ( ),E I E C E I                 (60) 

 

where 1I  is the idle period due to multiple vacation process, ( )E C  is the expected closedown 

time.  

 

Proof:  

 

Define a random variable 2J  as  

 

2

0,

1

if theserver findsatleast ' 'customersafter first vacation,

if theserver finds less than 'a'customersafter first vacation, .
J

a
 


 

 

Now, the expected length of idle period is given by   

 

1 1 2 2 1 2 2( ) ( / 0) ( 0) ( / 1) ( 1),E I E I J P J E I J P J       

                    
 2 1 2( ) ( 0) ( ) ( ) ( 1).E V P J E V E I P J    
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Solving for 1( )E I , we have 

 

1

2

( )
( ) ,

( 0)

E V
E I

P J



 

 

where 

 
1

2

0 0 0

( 0) 1 .
a n n i

j n i j i

n i j

P J g 
 

 

  

 
    

 
 

 
 

 

5.3. Expected queue length 

 

The expected queue length ( )E Q  at an arbitrary epoch is obtained by differentiating ( )P z  at 

1z   and is given by  

 

(1) (1) (1)

1 1 2

( )
(Q) ,

2. ( . ).(b S .R . .R )

h z
E

X   


               

(61) 

 

where 

 
1 1

1 1 2 2 1 2(z) ( , , , ) ( 1) ( 1) ( , , , ) ( )
b b

n n

n a n a

h f X S R R b b n n k f X S R R b n k
 

 

 
      

 
   

                   
1 1

3 1 2 4 1 2

0 0

( , , , , ) ( ) ( , , , , , )
a a

n n n

n n

f X S R R V g q f X S R R V C g
 

 

     

                   
1 1

5 1 2 6 1 2

0 0

( , , , , ) ( ) ,, , , , ,
a a

n n

n n

f X S R R V nq f X S R R V C ng
 

 

  
 

 

1 3 1( , , ) . ,f X S R H H  

2 1 2 4 1 3 2( , , , ) ,. .f X S R R H H H H   
(1) (2) (1)

3 1 2 1 1 2( , , , , ) .( 1). . ,. . . .f X S R R V b b V H bV H bV H     
(1) (2) (1) (1) (1)

4 1 2 1 1 1 2( , , , , , ) .( 1). . . . 2. . . . ,.f X S R R V C b b C H b C H V C H b C H      
(1)

5 1 2 1( , , , , ) 2. . ,.f X S R R V bV H  

(1) (1)

6 1 2 1 1( , , , , , ) 2. . . 2. . ,.f X S R R V C bV H b C H 
 

 

where  

 

(1) (1) (1)

1 1 1 2( . ).( . . . ),H X b S R R        

(1) (1) (1) (2)

2 2 1 2 1( . ).( . . . ) ( . ). .( 1)[H X b S R R X b b S            
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(2) (1) (1) (2) (1) (1) (1) (1)

1 1 2 2 1 2. 2. . . . . 2. . . . 2. . . . ],R S R R S R R R             

(1) (1) (1)

3 1 2. . . ,H S R R      

(2) (2) (2) (1) (1) (1) (1) (1) (1)

4 1 2 1 2 1 2. . . ) 2. . . 2. . . . 2. . . .H S R R S R R S R R            
 

 

and 

 

2 (1)

1 2 1( ), ( ), . . ( ),X E X X E X S X E S    

(1) (1)

1 1 1 2 1 2. . ( ), . . ( ),R X E R R X E R    

(1) (1)

1 1. . ( ), . . ( ),C X E C V X E V    

(2) 2 2 2

2. . ( ) . ( ) . ( ),S X E S E X E S    

(2) 2 2 2

1 2 1 1. . ( ) . ( ) . ( ),R X E R E X E R    

(2) 2 2 2

2 2 2 2. . ( ) . ( ) . ( ),R X E R E X E R    

(2) 2 2 2

2. . ( ) . ( ) . ( ),C X E C E X E C    

(2) 2 2 2

2. . ( ) . ( ) . ( ).V X E V E X E V  
 

 

5.4. Expected waiting time 

 

The expected waiting time is obtained by using Little's formula as 

 

( )
( ) ,

( )

E Q
E W

E X


 
 

where ( )E Q  is given in (62). 

 

6.  Cost model 

We obtain the total average cost with the following assumptions: 

 

sC  - startup cost 

hC  - holding cost per customer 

oC  - operating cost per unit time  

rC  - the reward per unit time due to vacation  

1r
C  - repair cost (essential) per unit time  

2r
C  - repair cost (optional) per unit time  
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uC  - closedown cost per unit time  

 

The length of the cycle is the sum of the idle period and busy period. The expected length of 

cycle ( )cE T , is obtained as, 

 

1

2

0

( ) ( )
( ) ( ) ( ) ( ) .

( 0)
c a

n

n

E V E T
E T E I E B E C

P J
g





    



 

 

The total average cost per unit is given by  

 

        Total average cost = Start-up cost per cycle +Holding cost of customers in the queue  

                                          +Operating cost.  +repair cost (essential and optional) per cycle 

                                          +closedown time cost -reward due to vacation per cycle 

 

                                          
1 1 2 2

2

( ) 1
. ( ) . . ( ) . . . ( ) .

( 0) ( )
s u r r r

c

E V
C C E c C E R C E R C

P J E T
  

 
     

 
 

                                                0. ( ) . ,hC E Q C  
 

 

where  

 

 1 2( ) ( ) ( ) ( ) / .E X E s E R E R b     
 

 

7.  Numerical illustration 
 

In this section a numerical example is analyzed using MATLAB, the zeroes of the function 

 

1 1 2( ( ))[(1 ) (1 ) ( ( )) ( ( )) ( ( ))]bz S X z R X z R X z R X z                   
 

 

are obtained and simultaneous equations are solved.  

 

1.  Batch size distribution of the arrival is Geometric with mean two.  

2.  Service time distribution is Erlang - k  with 2k  .  

3.  Vacation time, closedown time, essential and optional repair are exponential with parameter 

9  , 7  , 1 7   and  2 8   respectively.  

4.  0.2  .  

5.  0.3  .  

 

Startup cost - Rs.5.  

Holding cost per customer - Rs. 0.75. 

Operating cost per unit time - Rs. 6.  

Reward per unit time de to vacation - Rs. 2.  
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Repair cost (essential) per unit time - Rs. 0.5.  

Repair cost (optional) per unit time - Rs. 0.25.  

Closedown cost per time - Rs. 0.25.   

 

Table  1: Arrival rate vs Total average cost and performance measures 5, 2, 4a b     

λ E(Q) E(B) E(I) E(W) ρ TAC 

1.0  1.1916   0.6837   0.3011   0.5958   0.1180   15.3215  

1.5  1.8436   0.7377   0.2963   0.6145   0.1771   17.9426  

2.0  2.4604   0.8576   0.2885   0.6151   0.2361   18.2156  

2.5  3.0930   0.8742   0.2877   0.6186   0.2951   20.9135  

3.0  3.7260   0.9603   0.2838   0.6210   0.3541   23.0345  

3.5  4.4354   1.0652   0.2802   0.6336   0.4131   25.1126  

4.0  5.5107   1.1894   0.2769   0.6888   0.4721   28.5421  

4.5  6.8937   1.3493   0.2737   0.7660   0.5312   31.3296  

5.0  8.7046   1.5522   0.2707   0.8705   0.5902   35.5112  

   

Figure 2: Expected queue length E(Q) varies with different λ values 

        

Figure  3: Total Average Cost vs λ values 
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From Table 1, it is clear that when the arrival rate increases, average queue length, busy period and 

waiting time increases whereas the average idle period decreases. Figure 2 shows that the average queue 

length increases when arrival rate increases. Figure 3 presents the effect of total average cost with the 

variation of   values.  

8.  Conclusion  
 

In this paper, we have derived the PGF of the system size for an [ ] / ( , ) /1XM G a b  queueing 

model with multiple vacation, closedown, essential and optional repair for the steady-state case. 

Also we have obtained various performance measures and are verified numerically. In future this 

work may be extended into a queueing model with multi stages of repair.  

 

Acknowledgement   
 

The authors wish to thank the anonymous referees and Professor Aliakbar Montazer Haghighi for their 

careful review and valuable suggestions that led to considerable improvement in the presentation of this 

paper.  

 

 

 

REFERENCES 

 
 

Arumuganathan, R. and Jeyakumar, S. (2005). Steady State Analysis of a Bulk Queue with 

Multiple Vacations, Setup Times with N-policy and Closedown Times, Applied 

Mathematical Modelling, Vol. 29, pp. 972-986.  

Arumuganathan, R. and Judeth Malliga, T. (2006). Analysis of a Bulk Queue with Repair of 

Service Station and Setup Time, International Journal of Canadian Applied Mathematics 

Quarterly, Vol. 13, No. 1, pp. 19-42.  

Avi-Itzhak, B. and Naor, P. (1963). Some Queueing Problems with the Service Stations Subject 

to Breakdown, Operations Research, Vol. 11, No. 3, pp. 303-320.  

Ayyappan, G. and Shyamala, S. (2016). Transient Solution of an          Queueing Model 

with Feedback, Random Breakdowns, Bernoulli Schedule Server Vacation and Random 

Setup Time, International Journal of Operational Research, Vol. 25, No. 2, pp. 196-211.  

Choudhury, G. and Ke, J. C. (2012). A Batch Arrival Retrial Queue with General Retrial Times 

under Bernoulli Vacation Schedule for Unreliable Server and Delaying Repair, Applied 

Mathematical Modelling, Vol. 36, pp. 255-269.  

Choudhury, G. and Deka, M. (2015). A Batch Arrival Unreliable Bernoulli Vacation Model with 

Two Phases of Services and General Retrial Times, International Journal of Mathematics in 

Operational Research, Vol. 7, No. 3, pp.318-347.  

Cox, D. R. (1965). The Analysis of Non-Markovian Stochastic Processes by the Inclusion of 

Supplementary Variables, Proceedings of Computer Philosophical Society, Vol. 51, pp. 433-

441.  

Doshi, B. T. (1986). Queueing Systems with Vacations: A Survey, Queueing Systems, Vol. 1, 

pp. 29-66.  



598 G. Ayyappan and T. Deepa 
 

Guptha, D., Solanki, A. and Agrawal, K. M. (2011). Non-Markovian Queueing System        
  with Server Breakdown and Repair Times, Recent Research in Science and Technology, 

Vol. 3, No. 7, pp. 88-94.  

Haghighi, A. M. and Mishev, D. P. (2013). Stochastic Three-stage Hiring Model as a Tandem 

Queueing Process with Bulk Arrivals and Erlang Phase-Type Selection, International 

Journal of Mathematics in Operational Research, Vol. 5, No.5, pp.571-603.  

Jain, M. and Agrawal, P. K. (2009). Optimal Policy for Bulk Queue with Multiple Types of 

Server Breakdown, International Journal of Operational Research, Vol. 4, No. 1, pp. 35-54.  

Jeyakumar, S. and Senthilnathan, B. (2017). Modelling and Analysis of Bulk Service Queueing 

Model with Multiple Working Vacations and Server Breakdown, RAIRO - Operations 

Research, Vol. 51, No. 2, pp.485-508.  

Jeyakumar, S. and Senthilnathan, B. (2014). Modelling and Analysis of a             Queue 

with Multiple Vacations, Setup Time, Closedown Time and Server Breakdown without 

Interruption, International Journal of Operational Research, Vol. 19, No. 1, pp.114-139.  

Ke, J. C. (2007). Batch Arrival Queues under Vacation Policies with Server Breakdowns and 

Startup/Closedown Times, Applied Mathematical Modelling, Vol. 31, pp. 1282-1292.  

Krishna Reddy, G. V., Nadarajan, R. and Arumuganathan, R. (1998). Analysis of a Bulk Queue 

with N Policy Multiple Vacations and Setup Times, Computers Operations Research, Vol. 

25, No. 11, pp. 957-967.  

Lee, H. S. (1991). Steady State Probabilities for the Server Vacation Model with Group Arrivals 

and Under Control Operation Policy, Journal of Korean Mathematical Society, Vol. 16, pp. 

36-48.  

Li, W., Shi, D. and Chao, X. (1997). Reliability Analysis of M/G/1 Queueing System with Server 

Breakdowns and Vacations, Journal of Applied Probability, Vol. 34, pp. 546-555.  

Madan, K. C., Abu-Dayyeh, W. and Gharaibeh, M. (2003). Steady State Analysis of Two 

              Queue Models with Random Breakdowns, International Journal of 

Information and Management Sciences, Vol. 14, pp. 37-51.  

Madan, K. C. and Malalla, E. (2017). On a Batch Arrival Queue with Second Optional Service, 

Random Breakdowns, Delay Time for Repairs to Start and Restricted Availability of 

Arrivals during Breakdown Periods, Journal of Mathematical and Computational Science, 

Vol. 7, No. 1, pp.175-188.  

Moreno, P. (2009). A Discrete-time Single-server Queueing System under Multiple Vacations 

and Setup-closedown Times, Stochastic Analysis and Applications, Vol. 27, No. 2, pp. 221-

239.  

Tadj, L. (2003). On a Bilevel Bulk Queueing System under T-policy, Journal of Statistical 

Research, Vol. 7, No. 2, pp. 127-144.  

Takagi, H. (1991). Queueing analysis: a foundation of performance evaluation, Vacations and 

Priority Systems, Part-1, vol. I, North Holland.  

Takine,T. and Sengupta, B. (1997). A Single Server Queue with Service Interruptions, Queueing 

Systems, Vol. 26, pp. 285-300.  

Wang, K. H., Wang, T. Y. and Pearn, W. L. (2005). Maximum Entropy Analysis to the N Policy 

M/G/1 Queueing System with Server Breakdowns and General Startup Times, Applied 

Mathematics and Computation, Vol. 165, pp. 45-61.  

Wang, K. H., Wang, T. Y. and Pearn, W. L. (2007). Optimal Control of the N Policy M/G/1 

Queueing System with Server Breakdowns, General Startup Times, Applied Mathematical 

Modelling, Vol. 31, pp. 2199-2212.  



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 599 

Wang, K. H., Wang, T. Y. and Pearn, W. L. (2009). Optimization of the T Policy M/G/1 Queue 

with Server Breakdowns and General Startup Times, Journal of Computational and Applied 

Mathematics, Vol. 228, pp. 270-278. 

 


