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Abstract

In this paper, we consider unified classes P, (m, A B)and Q,(m, A, B) of multivalent harmonic
functions F =H +G e H(m). Some hypergeometric inequalities for the functions of the class
H (m) defined by generalized hypergeometric functions to be in these unified classes and its sub

classes TR, (m,A,B) and TQ, (m, A B), respectively, are obtained. Results, involving some
integral operators are also given. Further, some special cases of the results are mentioned.
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1. Introduction and Preliminaries

A continuous complex-valued function f =u+iv defined in a simply connected domain D is
said to be harmonic in D if both u and v are real-valued harmonic in D. In any simply
connected domain D < C, aharmonic function f can be written in the form: f = h+§, where
h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A
necessary and sufficient condition for f to be locally univalent and orientation preserving in D

is that |h'(2)|>|g'(z)] in D (see Clunie et al. (1984)). Let H denote a class of functions
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f =h+g which are harmonic, univalent and orientation preserving in the open unit disc
U={z:z|<1} andare normalized by f(0)=h(0)= f,(0)—1=0. Harmonic functions are useful
as they found their applications in the problems related to minimal surfaces (see Duren 2004).

Note that the family H reduces to the well known class S of normalized univalent functions if
the co-analytic part of f isidentically zero. Thatis, if g=0.

The concept of multivalent harmonic complex valued functions by using argument principle, was
given by Duren, Hengartner and Laugesen, Duren et al. (1994). Using this concept, Ahuja et al.
(2001, 2002) introduced a class H(m) of m -valent harmonic and orientation preserving

functions f =h+g e H(m), where h and g are m-valent functions of the form

h(z)=z" + i h,z" and g(z) = ignzn (9,/]<1meN={,23..}) (1.1)

n=m+1
which are analytic in U.
Motivated with the class conditions studied earlier by Ahuja et al. (2002, 2007, 2005) and by

observing various equivalent class conditions considered in Sharma et al. (2014), we define two
unified classes P, (m, A ,B) and Q,(m, A B) as follows:

Definition 1.

A function f =h+g eH(m) of the form (1.1), is said to be in the class P, (m, A B) if it
satisfies the condition

S {(n_m—)(l_B)+1}|hn|+ i{w_l}m <1 1.2)

n=m+| m(A_ B) n=m m(A— B)
where —1<B < A<1.
Definition 2.

A function f =h+g eH(m) of the form (1.1), is said to be in the class Q,(m, A B) if it
satisfies the condition

> ﬂ{wﬂ}lmhiﬂ{mm—w—l}lgnlSL (L3)

n=m1 M m(A_ B) n=m M m(A— B)
where —1<B < A<1.

It is clear from Definitions 1 and 2 that
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f eQH(m,A,B)QiePH(m,A,B).
m

Denote by TH(m) a subclass of functions f =h+geH (m) such that

h(z)=z" - i |h,|z"andg(z) = i|gn|z". (1.4)

n=m+1

Also, we denote TP, (m,A,B)=P,(m, A, B)nTH(m) and
TQ,(m,AB)=Q,(m,A B)NTH(m).

Classes defined above generalize various classes studied earlier. Some of the special classes are as
follows:

() If B=-1,A=1-2a (0<a<1) the class TP,(m,1-2a,~1)=TS;(m,a) studied by
Ahuja et al. (2001, 2002) .

() If B=-1,A=1-2a(0<a<1), the class TQ,(m1-2a,~1)=TK, (m,«), studied by
Ahuja et al. (2007).

(my If B=-1,A=1-2a(0<a<1)m=1, the class TP, (1,1-2a,~1) =TS} (&) studied by
Jahangiri (1998, 1999).

(IV) If B=-1,A=1,m=1, the class TP,(1,1,-1)=TS, studied by Silverman (1998),
Silverman et al. (1999).

(V) If B=-1,A=1,m=1, the class TQ,(1,1,-1)=TK,, studied by Silverman (1998),
Silverman et al. (1999).

Let p,geN,=NuU{0} For @ €C(i=1,..,p) and B eC(=-nji=1,.,9,neN,) the
generalized hypergeometric (gh) function

o Fa @@y B By 2) = Fy (1 (B ) 2)

is defined by

% (p<q+l;zeU), (1.5)

which is analyticat z=1 if (incase p=q+1 ) SR(Ziqzlﬁi —zip:lai)> 0, the symbol (1), is the

Pochhammer symbol defined in terms of gamma function by

n
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1, n=0,4=0,
A(A+1)..(A+n-1), neN.

In terms of generalized hypergeometric functions _F,((e );(5)z) and ,F.((,)i(5 ) 2), we

P q
consider a harmonic function F(z) = H(z)+G(z) e H(m), where H(z) and G(z) are defined

by
H(z)=2" ,F((@)(8)2z) and G(2)= 2", F((r (5 ) 2)-1] (1.6)
with

1;[|7i| < 1:1[|5||

The series expression of F(z) is given by

r

© H Zn 0 H(%)n m+1 Zn
F()=2"+ ) =

+y = 1.7
“=m+1r_[<ﬂ.>n O e, O
Further, consider a harmonic function
F(2) = zm(Z— Hzlﬁz)}el(z) e TH (m), (1.8)

where H,(z), G,(z) are defined for ; e C \{0}(i=1,...,p), R(B)>0 (i=1,...,9), 7 €C\{0}
(i=1,..r), %(5)>0 (i=1,..,s) with the condition

gm < gm )

by
H,(2) = i [1=])... z"
2)=z"+ q'=1 ,
n= m+lH(SR(IBi ))n,m (n—m)!
= (1.9)
G _ © H(|y'|)n m-+1 7"
1(2)_“:2”“11«3( Dy (7D
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Hypergeometric functions played an important role in solving the well known Bieberbach’s
Conjecture, in Geometric Function Theory. As it is fully solved by de Branges (1984), several
studies have been made so far in the theory of harmonic functions (see Sharma et al. (2011) and
Ahuja et al. (2004) etc.) in which various form of hypergeometric functions are studied. In Sharma
(2010), some multivalent harmonic functions defined by certain m-tuple integral operators are
studied. Also, by involving an operator a class of harmonic multivalent functions is studied for its
various properties in Porwal et al. (2011).

In this paper, we consider some multivalent harmonic functions F = H +G e H(m), where H
and G are defined by (1.6). Some gh inequalities for the function F to be in the classes
P,(m,A/B) and Q,(m, A B) are obtained. It is proved that these gh inequalities are necessary
for the function F, (e TH(m)) to be in TP,(m, A B) and TQ,(m, A, B) classes, respectively.
Further, under certain conditions on the parameters, some gh inequalities which are both necessary
and sufficient for the functions F (eTH(m)), to be in TP,(m,A/B) and TQ,(m, A B)

classes, respectively, are verified. Results, involving some integral operators are also given.
Special cases of the results are also mentioned.

2. Hypergeometric Inequalities for the Classes P,(m,A B) and Q,(m, A B)
Theorem 1.

Let F(z)=H(z)+G(z) e H(m) be of the form (1.6) and o, €C \{0} (i=1,...,p), R(B)>0
(i=1,...9), 7, €C\ {0} (i=1,...r), R(5)>0 (i=1,...,s) If under the validity conditions (in the
case p=q+1 and r=s+1) Z R(p >1+Z Jer| and Z R(5, >1+z 7] the gh
inequality:

[T
et e+ ) + 1)
(A-8) 'z

g LI
m(A—B)liIER(éi)

+{th%£ji }[ R b))k -1 (21)

holds, then F e P, (m, A, B).

+ R (R -1+ Fo((7:]+25((5) +2)1)
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Proof:

Note that for n>m,

p

H(ai )n—m 1 ani |)n—m 1

= o <2 o =9 (2.2)
[1B)n - 7| TI®RGBDew
and
H(yl )n—m+l ‘ Hq7i|)n—m+1
i=1 1 < izl 1 — (2.3)
S (n-m+1)1 " ¢ (n-m+1y 7" '
‘H(é‘i)n—mH ‘ H(m((si))n—mﬂ
Toshow F €P,(m, A B), inview of (1.7), by Definition 1, we need to show
B » (n—m)(l— B) \li:l[(ai)nm 1 ‘
5= _z m(A-B) +1} g (n—m)!
[0
+i((n+m)(1_ B)_ \]izl[(yi)n—mﬁ-l 1 Ll,
= m(A-B) }li[(d)nm 1 (n—m+1)!‘
On writing
n+m=(n-m+1)+2m-1 (2.4)

and using (2.2), (2.3) and the relation: (1), = A(A+1),,, we get

p p
H|ai| 1-B o ani|+l)n—m—l 1

Sl < q|=l Z - i=1 :
[[re) ™A B sy ), @D
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® aniDn,m 1
" z q - (n—m)!
S IRB

1§ C (7= R

i=1

) "AB)E @)+, O™

+{M_ }‘” ILN%D,]M L

1 i=1 ,
na-8) I [ TRy g 7!

where under the validity conditions given in the hypothesis, all the series converge to the

respective gh functions, and it is bounded above by 1 if the inequality (2.1) holds. This proves
Theorem 1.

Theorem 2.

Under the same hypothesis of Theorem 1, and under the validity conditions (in the case
p=qg+1 and r=s+1) D R(B)>2+D" o] and D R(S5)>2+D || if the gh
inequality:

aniDz
m(lg BB) oFollal+2k(2(8) +2)D)
I TI®e)),

+{(m +1)1- B)H} li[|ai|

I F [+1)(R(B)+1)1
m(A_B) ﬁ‘ﬁ(ﬂi) p q(qal|+ )( (B)+ ) )

i=1

+m[, F (e b (R(8))5D) 1]

1-B 1;[(|7i |)2
m(A-B) [T,

i=1

+ Fo (7] +2) (m(s) +2)2)
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F (7| + 1} (%:(5) +2)1)

+{(3m—1)(1— B)_l} }:ﬂy" |

m(A-B) l:[ﬂ%(@)
+Ln((lA__B é) m(2m=3)+1j-m +1} F(r)f®@)n=<m (@25

holds, then F €Q, (m, A B).
Proof:

Toshow F €Q,(m, A B), inview of (1.7), by Definition 2, we need to show

ek, , |
ﬁ(ﬂ) (n—m)!

i=1

s,= Y n[(”_m)(l_ B)+1}

m(A-B)

yln m+1 1 ‘
<m
(n— m+1)l‘

n=m

(n+ml B)
n

n—-m+1

Also, in view of (2.2), (2.3 ), we have

On writing

n(n—m) =(n-m)n-m-21)+(n—m)m+1),
n(n+m)=(n-m+1)(n-m)+(n—-m+1)(3n-1)+m(2m-3)+1 (2.7)

and using the relations: (1), = A(1+1),, and (1), =(1),(1+2),_,, we get

n=m+1



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 323

1-B fmaipz » ﬁqai|+2)nm2 1

= q|=l z q|=1
m(A—B) H(m(ﬁl))z n=m+2 H(m(ﬂi)+2)n_m_2 (n—m—2)!

+[(m+1)(1—B) lJ li:pl[|0‘i| i f[ﬂai|+1)n_m_l .

m(A—B) ]i[m(ﬂi)n=m+lﬁ(%(ﬂi)+l)nml (I’l—m—l)!

© ani |)n—m 1
+my =
n=m+1 H(m(ﬂl )) .

(n—m)!

and

r

1-B H(m)z = HQ7i|+ Z)n—m—l 1
= S|:1 Z S|:l
m(A— B) H(m(é‘l))z n=m-+1 H(m(é‘l) n 2)n—m—1 (n —-mMm —1)!

ﬁ|7i| - lLN?/i|+1)n,m
+((3m_1)(1_8)_1) =1 Z i 1 |
m(A—B) Hg}{(é‘l) n=m H(m(é‘i)'i'l)n_m (n—m).

r

i Hq}/i|)n—m+l
+|: 1';8 {m(2m—3)+1}—m+1}z Si:1 1
e ]:[(SR(@ ))n—m+l

(n—m+1)!

Hence, from the convergence conditions considered in the hypothesis and using (1.5), we get that
the right-hand side of (2.6) is bounded above by m if gh inequality (2.5) holds. This proves
Theorem 2.
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3. Hypergeometric Inequalities for the Classes TP, (m,A,B) and TQ, (m, A B)
Theorem 3.

Let F(z)=H(z)+G(z) eTH(m) be of the form (1.6). Suppose «; >-1(i =1,...,p) be such that

p
[[ei <0 and g >0(i=1,...q) and ,>0(i=1,..r) 6 >0(i=1,..,;s) satisfy the validity
i=1

conditions (inthe case p=g+1 and r=s+1) > B >1+> " o and Y 5 >1+> 7.
Then F TP, (m, A B) ifand only if gh inequality:

{ — F, ((ai +1); (ﬂ. +1);1) + p+1FQ+1((ai +1)’1;(ﬂi +1)’2;1)J

li[ 5 m(A-B),
I
HZ - BB) Fo(( +2) (5, + 1)) +{%—1}L F((7):(6, 1) 1]
<1 (3.1)
holds.
Proof:

Under the given constraints of the parameters, we have

r

a +1 n m-1 n o H(yi)nfmﬂ _n

z i z
+y = , (3.2)
ﬂ +1)n—m—l (n_m)! e H(5i)n—m+1 (n_m+1)!

[T T
F(z)=z" ; ;
[1 TI
which shows that F eTH(m). Now by Definition 1, FeTP,(m,AB) if and only if the
condition

b=l

ﬁ a +1 n 1 1
i=1

ﬂl ﬁ[( +1)n m-1

Iy
ik

o

3| )

n=m+1

¥
[y
0\
[y
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r

[(n +m)i-B) ‘1J [0)ns

i=1

ﬁ(ﬁ) (n—m+1)!£l’

holds. Similar to the proof of Theorem 1, on using (2.4) and the relation: (1), = A(A+1), ,, the
above inequality is equivalent to

p

];[ai 1-B w H(ai +1)n,m71 1 - H(ai +1)n—m—1 1
ﬁﬁi m(A-B) n;il ﬁ(ﬂi 1) (n—-m-1)! + nzzml ﬁ(ﬂa A1), (n—m)!

]i:1[7/i 1-B wH(j/i+1)n—m

i=1 1
li[ m(A- B)Z

5 @+, O

i=1 i=1

. (2m—l)(1— B)_]_ i:1;[(7’i)n_m+1 1
m(A-B) =~ li[(@)n_m+1 (n—m+1)!

<1,

which in view of (1.5) (under the validity conditions considered in Theorem 3) is the inequality
given by (3.1). This proves Theorem 3.

Theorem 4.

Let
F(z) = H(2)+G(z) eTH(m)

P
be of the form (1.6). Suppose ¢; >-1(i=1,...,p) besuchthat [ Je; <0 and g >0(i=1,...,q)
i=1

and 7, >0(i=1,...,r) & >0(i=1,..,s) satisfy the validity conditions (in the case p=gq+1 and

r= (S+1) Ziqzlﬂi > 2+Z:ip=10(i and Z:ﬂé‘i > 2+Zir=17i'

Then, F eTQ,(m, A B) if and only if gh inequality:
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1-B
1), ™A-B

ﬁai (o; +1)

) oFg (& +2). (8 +2)1)

+

li:plﬂ“i' H(m +1)1-B)

+1} o ((ai +1); (Bi+1):1) +m p+1FQ+l((ai +1)!1;(ﬂi +1)a2;1)J

f[ﬁi m(A-B)
1-B 1:1[(%)2

+m(A_B) f[(é])z rFs((7|+2)a(51+2),1)

+{(3m ~1)(1-B) _1} 1_1[7

m(A-B) H 5
| B slam-3) - L R @ - 69
holds.
Proof:

Under the given parametric constraints, similar to Theorem 3, let the function F e TH(m) be of
the form (3.2). Then, by Definition 2, F eTQ,,(m, A, B), if and only if

i n((n -m)1-B) 1] I;Iai li;][(ai L) 1
n=m+1 m(A_ B) ﬁ B). (n—m)!

i=1
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r

0 H(J/l )n7m+l
4 ((n+m)(1— B)_lJ B . :1+1)'£m
H(é‘i)n—mﬂ - .

Similar to the method adopted in previous theorems, on using (2.7) and relations:
(1), =AA+1),, and (1), =(2),(2+2),,, we observe in view of (1.5) (under the given validity

conditions), that the above inequality is equivalent to the gh inequality (3.3). This proves Theorem
4,

We show in our next results that the gh inequalities given by (2.1) and (2.5) are the necessary and
sufficient for F,(z) defined by

F(2) = ZmLZ—HZl—rgZ)JJFGl(Z),

where H, and G, are of the form (1.9) to be, respectively, in TP, (m, A B) and TQ, (m, A B)
classes. We only give proof for TP, (m, A, B) class. The results for other classes can similarly be
proved.

Theorem 5.

Let F, eTH(m) be defined by (1.8). Under the same parametric conditions considered in
Theorem 1, F TR, (m, A B) if and only if gh inequality (2.1) holds.

Proof:
Let F, e TH(m) be defined by (1.8). Then the series expression of F,(z) is given by

p

. o ]_:l[qaiDnm Zn 0 ]_:l[(b/iDnerl Z_n
F(z)=2 _n;l g (n_m)!+r;n s (n—m+1)!
H(m(ﬂl ))n—m H(m(él ))n—m+l

i=1

(3.4)

Following the method of the proof of Theorem 1, by Definition 1, we prove that
F, eTP,(m, A B) ifand only if (2.1) holds.

Theorem 6.

Let K, eTH(m) be defined by (1.8). Under the same parametric conditions considered in
Theorem 2, F eTQ, (m, A, B) if and only if gh inequality (2.5) holds.



328 Vimlesh Kumar Gupta and Poonam Sharma

4. Integral Operators
Corresponding to H(z) and G(z) given by (1.6), consider an integral
I:H(m) — H(m) defined by

|F(z)=zﬂijT(t)dt+mj$dt

0

p r

e 0 o TT00n

Mo z o z
:Zm+z_'-1 M=

he=.n ﬁ(ﬂ) ) (n—m)!+n:m n li[(é‘-)n,m 1 (n—m+1)!

n

and corresponding to H,(z) and G;(z) given by (1.9), an integral
J:TH(m) -» TH(m) defined by

m
0

IF(2) = zm[z—ﬂjHlT(t)dtJ+ijlT(t)dt

0

r

(22 AR § (7] B

i=1 z

e " H(iR(ﬂl ))n—m (n - m)l ) e F f[(m(é‘l ))n—m+1 (n -m +1)| |

Theorem 7.

operator

(4.1)

operator

(4.2)

Let IF(2) e H(m) be of the form (4.1). Under the same parametric conditions considered in
Theorem 1 if the gh inequality (2.1) holds then IF(z) belongsto B, (m, A B). Furthermore, the
gh inequality (2.1) holds, if a harmonic function JF,(z) defined by (4.2) belongs to the class

TQ, (M, A B).

Proof:

To prove that IF(z) belongs to P, (m, A B), by Definition 1, it is to show on using (2.2) and

(2.3) that
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i((—n_mxl_BMJE e
m(A-8) " Plwg),, O™

n=m+1
i=1

[n m)1-B) lJm li[(l%l)n met )

A-B) H(iR nm+l(n—m+1)!S

*>

n=m

Since 0<™<1(n>m), itis enough to show that
n

(n—m)1-B) +1) ani |)n,m .

z( -8 gy, O

i=1

r

(n—m)(l—B) 1J _ qy'|)n m+1 1

+an:n( m(A-B) liI[(iR (n—-m+1)! =

n m+1

which holds true similar to the proof of Theorem 1, if the gh inequality (2.1) holds. Further, let
JF,(2) eTQ, (m, A, B), then by Definition 2, we have

sofeomia) ) ek

n=m+1

r

(ompeg) ) 0D
Zm( m(A-B8) ‘1)5 (-m+D1 =

(SR(§I )) n-m+1

i=1

and from this, we get (since, m>1)
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i [(n—m)(l— B)+1j ]i;l[qaipnm 1
m(A-B) [ m(s),, O™

n=m+1
i=1

r

+Z-o:( n— m)(l B) 1j Si:l(b/i|)n—m+l 1 <
m(A-8) (B ), O

i=1

n=m

which similar to the proof of Theorem 1 confirms that the inequality (2.1) holds. This proves
Theorem 7.

5. Special Cases

Taking p=q+1, a; = f,,2, = By, = By, We observe that

o g ((ai )1(:B| ); 2) =, R, B;2) and Fs((7/i ); (6:):2) = (71, 72:6,: 2).
On using well known Gauss’s summation formula:

I'(c)r(c-a-b)

I'(c—a)r(c—b)

.F(a,b;cl) = (R(c—a-b)>0)

and the formula:

F(a+ k,b+k;c+k;1):% ,F.(a,b;c;1)(R(c—a—b)>k),

for k =0,1,2,..., our results of this paper may provide the special cases involving the Gauss
hypergeometric functions.

Let for a;, 7, € C\{0} (i=1,2), R(B,),R(5,)>0

G,(2)=2" Ry, B, 2) + Zmil(zFl(h'?/z;é‘l; Z)_l) (Z EU), (5.1)

with the condition |y,7,|<|6,], and for «;, 7, € C \{0} (i =1,2) and R(A,).R(5,)>0,

2 F1(|a1|, |0(2|; m(ﬂ1); Z)

Zm

Gz(z):zm(Z— J TLR(ER6)2)-1) zeu)  (5.2)
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with the condition |7l;/2| <R(d,;). Our next Theorem provides a result for the class P, (m, A, B),
the result for Q. (m, A,B) class may similarly be proved.

Theorem 8.

Let G, e H(m) be defined by (5.1). If for R(B,) > 1+ o | +|a,], R(S,) > 1+]p|+|r,|, inequality:

1-B  |ona,[D(R(8)I(R(B) ~ || -]y -1)
m(A-B)  T(R(B)-|a|T®R(B,) —|a,))

, TRGA)ICR(B) ~[es| - ey
T(R(B) ~|eaJr(R(B) ~ery])

1-B |7/17/2|F(SR(51))F(5R(§1) - |7/1| - |7/2| _1)
m(A-B)  T(R() - ros) -7 )

(5.3)

X {(Zm—l)(l— B)_l}r(m(él))r(ﬂ%(d)—Inl—lnl)_l} a1

m(A-B) (RS~ L(RG) —[r])

holds, then G, € P, (m, A,B). The inequality (5.3) is necessary for G, e TP, (m, A,B) defined by
(5.2). Furthermore, suppose o, a, >-1, be such that o, <0 and g, >0, and p,,y,>0,

0,>0 with g >1+a+a, and o6,>1+y,+y,. Then G, eTP,(m A B) if and only if
inequality

|0£0{||: 1-B F(ﬂl_al_az_l) A1 }
v m(A_B)F(ﬂl_al)r(ﬂl_az) (ﬁl_al_]‘Xﬁl_al_z)aZ

1-B |7172|F(51)F(51 71772 _1)
m(A_ B) 1—‘(51_7/1)1—‘(51_7/2)

+{(2m ~11-B) B)_l}{r(@)r(él N _yz)—l} <1

m(A_ B) F(51_71)F(51_72)

holds.
6. Conclusion

In this paper, some gh inequalities for the function F to be in the classes P,(m, A B) and
Q. (m, A, B) areobtained. It is proved that these gh inequalities are necessary for the functions F,
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(e TH(m)) to be in TR, (m, A B) and TQ, (m, A B) classes, respectively. Furthermore, under
certain conditions on the parameters, some gh inequalities which are both necessary and sufficient
for the functions F (e TH(m), to be in TR, (m,A,B) and TQ, (m, A B) classes, respectively,

are verified. Results, involving some integral operators are also given. Special cases of the results
are also mentioned.
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