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Abstract 
 

In this paper, we consider unified classes ),,( BAmPH and ),,( BAmQH  of multivalent harmonic 

functions )(= mHGHF  . Some hypergeometric inequalities for the functions of the class 

)(mH  defined by generalized hypergeometric functions to be in these unified classes and its sub 

classes ),,( BAmTPH  and ),,( BAmTQH , respectively, are obtained. Results, involving some 

integral operators are also given. Further, some special cases of the results are mentioned. 
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1.  Introduction and Preliminaries 

 

A continuous complex-valued function ivuf =  defined in a simply connected domain D  is 

said to be harmonic in D  if both u  and v  are real-valued harmonic in D . In  any simply 

connected domain ,CD   a harmonic function f  can be written in the form: ,= ghf   where 

h  and g  are analytic in D . We call h  the analytic part and g  the co-analytic part of f . A 

necessary and sufficient condition for f  to be locally univalent and orientation preserving in D  

is that )(>)( zgzh ''  in D (see Clunie et al. (1984)). Let H  denote a class of functions 
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ghf =  which are harmonic, univalent and orientation preserving in the open unit disc 

1}|<:|{= zzU  and are normalized by 0.=1(0)=(0)=(0) zfhf  Harmonic functions are useful 

as they found their applications in the problems related to minimal surfaces (see Duren 2004). 

 

Note that the family H  reduces to the well known class S  of normalized univalent functions if 

the co-analytic part of f  is identically zero. That is, if 0g . 

 

The concept of multivalent harmonic complex valued functions by using argument principle, was 

given by Duren, Hengartner and Laugesen, Duren et al. (1994). Using this concept, Ahuja et al. 

(2001, 2002) introduced a class  mH  of m -valent harmonic and orientation preserving 

functions ghf =  mH , where h  and g  are m -valent functions of the form 

 

   ,...,1,2,31,<=)(  and=)(
=1=

=N 




mgzgzgzhzzh m
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mn

n

n

mn

m  (1.1) 

 

which are analytic in .U  

 

Motivated with the class conditions studied earlier by Ahuja et al. (2002, 2007, 2005) and by 

observing various equivalent class conditions considered in Sharma et al. (2014), we define two 

unified classes ),,( BAmPH  and ),,( BAmQH  as follows: 

 

Definition 1. 
 

A function ghf =  mH  of the form (1.1), is said to be in the class ),,( BAmPH  if it 

satisfies the condition 
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 where 1.<1  AB  

 

Definition 2. 
 

A function ghf =  mH  of the form (1.1), is said to be in the class ),,( BAmQH  if it 

satisfies the condition 
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where 1.<1  AB  

 

It is clear from Definitions 1 and 2 that  
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Denote by )(mTH  a subclass of functions  mHghf =  such that 
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Also, we denote ),,(=),,( BAmPBAmTP HH )(mTH  and 

 

 ).(),,(=),,( mTHBAmQBAmTQ HH   
 

Classes defined above generalize various classes studied earlier. Some of the special classes are as 

follows: 

 

(I) If  ,1<021=1,=   AB  the class  ,,=1),2,1(  mTSmTP HH

  studied by 

Ahuja et al. (2001, 2002) . 

(II) If  ,1<021=1,=   AB  the class  ,,=1),2,1(  mTKmTQ HH   studied by 

Ahuja et al. (2007).  

(III)  If   1,=,1<021=1,= mAB    the class    HH TSTP =1),2(1,1  studied by 

Jahangiri (1998, 1999). 

(IV) If 1,=1,=1,= mAB  the class  HH TSTP =1)(1,1,  studied by Silverman (1998), 

Silverman et al. (1999). 

(V) If 1,=1,=1,= mAB  the class HH TKTQ =1)(1,1,  studied by Silverman (1998), 

Silverman et al. (1999).  

 

Let  .0=, 0  NNqp  For  pii 1,...,=C  and  ,,1,..,=; 0N C  nqini the 

generalized hypergeometric (gh) function   

 

     zFzF iiqpqpqp ;;:=);,...,;,...,( 11 
 

 

is defined by 
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which is analytic at 1=z  if (in case 1= qp  )   0,>
1=1= i

p

ii

q

i
    the symbol  n  is the 

Pochhammer symbol defined in terms of gamma function by 
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In terms of generalized hypergeometric functions     zF iiqp ;;   and     ,;; zF iisr   we 

consider a harmonic function  ,)()(=)( mHzGzHzF   where )(zH  and )(zG  are defined 

by  
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The series expression of )(zF  is given by 
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Further, consider a harmonic function 
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where ),(1 zH )(1 zG  are defined for i C  0\  ,1,...,= pi 0>)( i  ,1,...,= qi  Ci  0\
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Hypergeometric functions played an important role in solving the well known Bieberbach’s 

Conjecture, in Geometric Function Theory. As it is fully solved by de Branges (1984), several 

studies have been made so far in the theory of harmonic functions (see Sharma et al. (2011) and 

Ahuja et al. (2004) etc.) in which various form of hypergeometric functions are studied. In Sharma 

(2010), some multivalent harmonic functions defined by certain m -tuple integral operators are 

studied. Also, by involving an operator a class of harmonic multivalent functions is studied for its 

various properties in Porwal et al. (2011). 

 

In this paper, we consider some multivalent harmonic functions ),(= mHGHF   where H  

and G  are defined by (1.6). Some gh inequalities for the function F  to be in the classes 

),,( BAmPH  and ),,( BAmQH  are obtained. It is proved that these gh inequalities are necessary 

for the function 1F  ( )(mTH ) to be in ),,( BAmTPH  and ),,( BAmTQH  classes, respectively. 

Further, under certain conditions on the parameters, some gh inequalities which are both necessary 

and sufficient for the functions F  ( )(mTH ) ,  to be in ),,( BAmTPH  and ),,( BAmTQH  

classes, respectively, are verified. Results, involving some integral operators are also given. 

Special cases of the results are also mentioned. 

 

 

2. Hypergeometric Inequalities for the Classes ),,( BAmPH  and ),,( BAmQH  

 

Theorem 1. 

 

Let  mHzGzHzF  )()(=)(  be of the form (1.6) and i C  0\  ,1,...,= pi  0>)( i

 ,1,...,= qi Ci  0\  ,1,...,= ri 0>)( i  .1,...,= si  If under the validity conditions (in the 

case 1= qp  and 1= sr )   i
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Proof: 

 

Note that for ,mn   
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To show F ),,,( BAmPH  in view of (1.7), by Definition 1, we need to show 
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On writing  

 

   121=  mmnmn  (2.4) 

 

and using (2.2), (2.3) and the relation:     ,1= 1 nn   we get 
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where under the validity conditions given in the hypothesis, all the series converge to the 

respective gh functions, and it is bounded above by 1 if the inequality (2.1) holds. This proves 

Theorem 1.  

 

Theorem 2. 
 

Under the same hypothesis of Theorem 1, and  under the validity conditions (in the case 
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holds, then F  ).,,( BAmQH   

 

Proof: 
 

To show F ),,,( BAmQH  in view of (1.7), by Definition 2, we need to show 
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Also, in view of (2.2), (2.3 ), we have 

 

                
  

 
  

 
.1

1
1

1

=1=

2 n

mn

n

mn BAm

Bmn
n

BAm

Bmn
nS  



























 





        (2.6) 

 

On writing 

 

                     ,1)(1=)(  mmnmnmnmnn  

                      ( ) = 1 1 (3 1) 2 3 1n n m n m n m n m m m m                   (2.7) 

 

and using the relations:     11=  nn   and       ,2= 22  nn   we get 

 

       
  

  n

mn BAm

Bmn
n 


















1
1

1=  

 



AAM: Intern. J., Vol. 13, Issue 1 (June 2018)  323 

 

 

                
 

   

2)!(

1

2))((

2

))((

1
=

2

1=

2
1=

2=

2

1=

2
1=


























mnBAm

B

mni

q

i

mni

p

i

mn

i

q

i

i

p

i









 
 

                       
  

 

 

1)!(

1

1))((

1

)(

1
11

1

1=

1
1=

1=

1=

1=





































mnBAm

Bm

mni

q

i

mni

p

i

mn

i

q

i

i

p

i









 
 

                      

 

)!(

1

))((
1=

1=

1= mn
m

mni

q

i

mni

p

i

mn 



















 
and 

 

       
  

  n

mn BAm

Bmn
n 
















1
1

=  
 

              
 

   

1)!(

1

2))((

2

))((

1
=

1

1=

1
1=

1=
2

1=

2
1=















 








mnBAm

B

mni

s

i

mni

r

i

mn
i

s

i

i

r

i









 
 

                      
  

 

 

)!(

1

1))((

1

)(

1
113

1=

1=

=

1=

1=

mnBAm

Bm

mni

s

i

mni

r

i

mn
i

s

i

i

r

i











































 
 

                      
 

  
 

.
1)!(

1

))((

1132
1

1

1=

1
1=

= 


























mn
mmm

BAm

B

mni

s

i

mni

r

i

mn 



 

 

Hence, from the convergence conditions considered in the hypothesis and using (1.5), we get that 

the right-hand side of (2.6) is bounded above by m  if gh inequality (2.5) holds. This proves 

Theorem 2.  
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3. Hypergeometric Inequalities for the Classes ),,( BAmTPH  and ),,( BAmTQH  

 

Theorem 3. 

 

Let  mTHzGzHzF  )()(=)(  be of the form (1.6). Suppose  pii 1,...,=1>   be such that 
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holds.  

 

Proof: 

 

Under the given constraints of the parameters, we have 
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holds. Similar to the proof of Theorem 1, on using (2.4) and the relation:     ,1= 1 nn   the 

above inequality is equivalent to 
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which in view of (1.5) (under the validity conditions considered in Theorem 3) is the inequality 

given by (3.1). This proves Theorem 3.  

 

Theorem 4. 
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Then, ),,( BAmTQF H  if and only if gh inequality: 
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holds.  

 

Proof: 

 

Under the given parametric constraints, similar to Theorem 3, let the function )(mTHF   be of 

the form (3.2). Then, by Definition 2, ),,( BAmTQF H , if and only if 
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Similar to the method adopted in previous theorems, on using (2.7) and relations: 

    11=  nn   and       ,2= 22  nn   we observe in view of (1.5) (under the given validity 

conditions), that the above inequality is equivalent to the gh inequality (3.3). This proves Theorem 

4.  
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where 1H  and 1G  are of the form (1.9) to be, respectively, in ),,( BAmTPH  and ),,( BAmTQH  

classes. We only give proof for ),,( BAmTPH  class. The results for other classes can similarly be 

proved. 

 

Theorem 5. 

 

Let )(1 mTHF   be defined by (1.8). Under the same parametric conditions considered in 

Theorem 1, ),,(1 BAmTPF H  if and only if gh inequality (2.1) holds.  

 

Proof: 

 

Let )(1 mTHF   be defined by (1.8). Then the series expression of )(1 zF  is given by 
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 (3.4) 

 

Following the method of the proof of Theorem 1, by Definition 1, we prove that 

),,(1 BAmTPF H  if and only if (2.1) holds.  

 

Theorem 6. 

 

Let )(1 mTHF   be defined by (1.8). Under the same parametric conditions considered in 

Theorem 2, ),,(1 BAmTQF H  if and only if gh inequality (2.5) holds.  
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4.   Integral Operators 
 

Corresponding to )(zH  and )(zG  given by (1.6), consider an integral operator 

)()(:I mHmH   defined by  
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and corresponding to )(1 zH  and )(1 zG  given by (1.9), an integral operator 

)()(: mTHmTH J  defined by 
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Theorem 7. 
 

Let  mHzF )(I  be of the form (4.1). Under the same parametric conditions considered in 

Theorem 1 if the gh inequality (2.1) holds then )(I zF  belongs to ).,,( BAmPH  Furthermore, the 

gh inequality (2.1) holds, if a harmonic function )(1 zFJ  defined by (4.2) belongs to the class 

).,,( BAmTQH  

 

Proof: 

 

To prove that )(I zF  belongs to ),,,( BAmPH  by Definition 1, it is to show on using (2.2) and 

(2.3) that 
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Since 1<0 
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which holds true similar to the proof of Theorem 1, if the gh inequality (2.1) holds. Further, let 

),,,()(1 BAmTQzF HJ  then by Definition 2, we have 
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and from this, we get (since, )1m  
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which similar to the proof of Theorem 1 confirms that the inequality (2.1) holds. This proves 

Theorem 7.  

 

5.   Special Cases 
 

Taking 1,= qp ,=,...,=,= 3423 qp   we observe that 
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On using well known Gauss’s summation formula:  
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for 0,1,2,...,=k  our results of this paper may provide the special cases involving the Gauss 

hypergeometric functions. 

 

Let for ,i Ci  0\  ,1,2=i     0,>, 11    

 

    UG   zzFzzFzz mm 1);;,();;,(=)( 12112

1

121121  , (5.1) 

 

with the condition ,< 121   and for ,i Ci  0\  1,2=i  and     0,>, 11    
 

 
 

    UG 











 
  zzFz

z

zF
zz m

m

m 1);;,(
);;,(

2=)( 12112

112112

2 


 (5.2) 

 



AAM: Intern. J., Vol. 13, Issue 1 (June 2018)  331 

 

 

with the condition ).(< 121    Our next Theorem provides a result for the class ),,,( BAmPH  

the result for ),,( BAmQH  class may similarly be proved. 

 

Theorem 8. 
 

Let  mH1G  be defined by (5.1). If for ,1>)( 211   ,1>)( 211    inequality: 
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holds, then ),,(1 BAmPHG . The inequality (5.3) is necessary for ),,(2 BAmTPHG  defined by 

(5.2). Furthermore, suppose 1,>, 21   be such that 0<21  and 0,>1  and 0,>, 21 

0>1  with 211 1>     and  .1> 211    Then ),,(1 BAmTPHG  if and only if 

inequality 
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holds.  

 

6.   Conclusion 
 

In this paper, some gh inequalities for the function F  to be in the classes ),,( BAmPH  and 

),,( BAmQH  are obtained. It is proved that these gh inequalities are necessary for the functions 1F  
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( )(mTH ) to be in ),,( BAmTPH  and ),,( BAmTQH  classes, respectively. Furthermore, under 

certain conditions on the parameters, some gh inequalities which are both necessary and sufficient 

for the functions F ( )(mTH ,  to be in ),,( BAmTPH  and ),,( BAmTQH  classes, respectively, 

are verified. Results, involving some integral operators are also given. Special cases of the results 

are also mentioned. 
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