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Abstract

In this paper, we study a generalized variational inclusion problem involving difference of mono-
tone operators in Hilbert spaces. We established equivalence between the generalized variational
inclusion problem and a fixed point problem. We establish an Ishikawa type iterative algorithm
for solving a generalized variational inclusion problem involving difference of monotone opera-
tors, which is more general than Mann-type iterative algorithm. An existence result as well as a
convergence result are proved separately. The problem of this paper is more general than many ex-
isting problems in the literature. Several special cases of generalized variational inclusion problem
involving difference of monotone operators are also mentioned.
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1. Introduction

Variational inequality theory provides us with a unified framework for dealing with a wide class
of problems arising in elasticity, structural analysis, economics, physical and engineering sciences,
and so forth (for example, see Ahmad and Ansari (2000), Baiocchi and Capelo (1984), Harker
and Pang (1990) and references therein). A useful and important generalization of variational in-
equalities is a mixed type variational inequality containing nonlinear term. Due to the presence
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of the nonlinear term, the projection method can not be used to study the existence and algo-
rithm of solutions for the mixed type variational inequalities. In 1994, Hassouni and Moudafi used
the resolvent operator technique for maximal monotone mappings to study a class of mixed type
variational inequalities with single valued mappings called variational inclusion and developed a
perturbed algorithm for finding approximate solutions to the mixed variational inequalities. Adly
(1996), Ahmad and Ansari (2000), Ahmad et al. (2002), Chang et al. (2000), Ding (1997), Ding and
Luo (2000), and Huang (1996, 1998, 2001) studied some important generalizations of variational
inclusions in different directions.

In recent past, the variational inclusions involving sum of monotone operators were studied by
many authors and recently Noor et al. (2014) considered variational inclusions involving differ-
ence of monotone operators. Variational inclusions involving sum of monotone operators have
ample applications in mechanics, physics, optimization and control, nonlinear programming, eco-
nomics, transportation equilibrium and engineering sciences, etc. (for example, see Ahmad et al.
(2014, 2015), Ding (2003), Hamdi (2005), Haussouni et al. (1994), Kazmi (1997), Lions et al.
(1979), Salahuddin et al. (2001)), whereas variational inclusions involving difference of monotone
operators are applicable in DC programming, image restoring processing, tomography, molec-
ular biology, etc., (for example, see Adly et al. (1999), Ahmad et al. (2016), An et al. (2005),
Bnouhachem et al. (2014), Brezis (1973), Cristescu et al. (2002), Deepmala (2014), Husain et. al
(2013), Khatri (2010), Moudafi (2008, 2013), Moudafi et al. (2006, 2014), Noor et al. (2009), Rizvi
et al. (2016), Tuy (1987)).

Inspired and motivated by the above mentioned facts, in this paper we study a generalized vari-
ational inclusion problem involving difference of monotone operators in Hilbert spaces. We es-
tablish an Ishikawa type iterative algorithm for solving variational inclusion problem involving
difference of monotone operators. An existence result is proved and convergence analysis is dis-
cussed. Several special cases are also mentioned.

2. Preliminaries

Throughout the paper, we consider X to be a real Hilbert Space endowed with a norm ‖ · ‖ and
inner product 〈·, ·〉, d is the metric induced by the norm ‖ ·‖, 2X (respectively, CB(X)) is the family
of all nonempty (respectively, closed and bounded) subsets of X, D(·, ·) is the Hausdorff metric on
CB(X) defined by

D(P,Q) = max
{

sup
x∈P

d(x,Q), sup
y∈Q

d(P, y)
}
,

where d(x,Q) = inf
y∈Q

d(x, y) and d(P, y) = inf
x∈P

d(x, y).

We require the following definitions and results to prove main result.

Definition 2.1.

An operator g : X → X is said to be
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(i) Lipschitz continuous, if there exists a constant δg > 0 such that

‖g(u)− g(v)‖ ≤ δg‖u− v‖,∀u, v ∈ X,

(ii) strongly monotone, if there exists a constant α > 0 such that

〈g(u)− g(v), u− v〉 ≥ α‖u− v‖2, ∀u, v ∈ X.

Definition 2.2.

A multi-valued operator S : X → CB(X) is said to be D-Lipschitz continuous, if for any x, y ∈ X,
there exists a constant δDS

> 0, such that

D (S(x), S(y)) ≤ δDS
‖x− y‖.

Definition 2.3 (Fang et al. (2003)).

A multi-valued operator A : X → 2X is said to be

(i) monotone, if

〈x− y, u− v〉 ≥ 0, ∀u, v ∈ X,x ∈ A(u), y ∈ A(v),

(ii) maximal monotone if A is monotone and [I + λA](X) = X for all λ > 0, where I denotes the
identity operator on X.

Definition 2.4 (Fang et al. (2003)).

Let H : X → X be a single valued operator and A : X → 2X be a multi-valued operator. The
operator A is said to be H-monotone if A is monotone and [H+λA](X) = X holds for every λ > 0.

Definition 2.5 (Fang et al. (2003)).

Let H : X → X be the single-valued operator and A : X → 2X be H-monotone operator. The
resolvent operator RHλ,A : X → X is defined by

RHλ,A(u) = [H + λA]−1(u), ∀u ∈ X,λ > 0. (1)

Lemma 2.6 (Fang et al. (2003)).

The resolvent operator defined by (1) is single-valued and
1

r
-Lipschitz continuous.

Lemma 2.7 (Weng (1991)).

Let {an}∞n=1 be a non-negative real sequence satisfying

an+1 ≤ (1− αn)an + σn

with αn ∈ [0, 1],
∑∞

n=1 αn =∞, and σn = O(αn). Then limn→∞ an = 0.

3. Formulation of the problem and Ishikawa type Iterative Algorithm

In this section, we consider a generalized variational inclusion problem involving difference of
monotone operators and we establish an Ishikawa type iterative algorithm for solving this problem.
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Let A : X → 2X be a multi-valued maximal monotone operator and P, f, g : X → X be the
operators where P and f are monotone operators. Assume that g : X → X are an operator and
R,S : X → CB(X) be the multi-valued operators. We consider the problem of finding u ∈ X,w ∈
R(u), t ∈ S(u) such that

0 ∈ A (g(u))− [P (w) + f(t)]. (2)

We call problem (2) as generalized variational inclusion problem involving difference of monotone
operators.

Special Cases:

(i) If f = 0, the zero operator and R = I, the identity operator, then problem (2) reduces to the
problem of finding u ∈ X such that

0 ∈ A (g(u))− P (u). (3)

Problem (3) was studied and considered by Noor et al. (2014).

(ii) If g = I, the identity operator, then problem (3) reduces to the problem of finding u ∈ X such
that

0 ∈ A(u)− P (u). (4)

Problem (4) was considered by Noor et al. (2009) and Moudafi (2008) in different settings.

We remark that for suitable choices of operators involved in the formulation of problem (2), one
can obtain many problems of variational inclusions (inequalities) studied in recent past.

The following lemma ensures that the variational inclusion problem involving difference of mono-
tone operators is equivalent to a fixed point problem.

Lemma 3.1.

The triplet (u,w, t), where u ∈ X,w ∈ R(u) and t ∈ S(u) is a solution of the generalized variational
inclusion problem involving difference of monotone operators (2) if and only if it satisfies the
following equation:

g(u) = RHλ,A [H (g(u)) + λ{P (w) + f(t)}] , (5)

where λ > 0 is a constant.

Proof:

The proof is a direct consequence of the definition of resolvent operator (1). �

Using Lemma 3.1, we define the following Ishikawa type iterative algorithm for solving general-
ized variational inclusion problem involving difference of monotone operators (2).

Ishikawa Type Iterative Algorithm 3.2.

Let {αn}∞n=0 and {βn}∞n=0 be two sequences such that αn, βn ∈ [0, 1] and
∑∞

n=0 αn diverges. Let
{en}∞n=0 and {rn}∞n=0 be two sequences in X introduced to take into account the possible inexact
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computation. Let A : X → 2X be a multi-valued maximal monotone operator, P, f : X → X be
the monotone operators, g : X → X be an operator and R,S : X → CB(X) be the multi-valued
operators. For a given u0 ∈ X, compute the sequence {un}, {wn} and {tn} by the following iterative
scheme:

un+1 = (1− αn)un + αn
[
vn − g(vn) +RHλ,A [H(g(vn)) + λ{P (w̄n) + f(t̄n)}]

]
+ αnen,

(6)
vn = (1− βn)un + βn

[
un − g(un) +RHλ,A [H(g(un)) + λ{P (wn) + f(tn)}]

]
+ βnrn,

(7)

and

‖wn − w̄n‖ ≤ D
(
R(un), R(vn)

)
, (8)

‖tn − t̄n‖ ≤ D
(
S(un), S(vn)

)
, (9)

for all n ≥ 0, where w̄n ∈ R(vn), t̄n ∈ S(vn), wn ∈ R(un), tn ∈ S(un) can be chosen arbitrarily, and
λ > 0 is a constant.

If βn = 0, for all n ≥ 0, then Algorithm 3.2 reduces to the well known Mann-type iterative algo-
rithm. �

Remark.

We remark that for suitable choices of operators from Algorithm 3.2, we can easily obtain Al-
gorithm 2.4 of Haussouni and Moudafi (1994), Algorithm 3.2 of Ding (1995), Algorithm 3.5 of
Ding (2003) and many more algorithms studied by several authors for solving various variational
inclusion problems.

4. Existence of solution and convergence analysis

In this section, we prove an existence result and discuss convergence analysis.

Theorem 4.1.

Let X be a real Hilbert space. Let P, f, g,H : X → X be the operators such that P and f are
monotone operators. Let A : X → 2X and R,S : X → CB(X) be the multi-valued operators such
that A is H-monotone operator. Assume that

(i) g is α-strongly monotone and δg-Lipschitz continuous,
(ii) H is δH-Lipschitz continuous,

(iii) P is δP -Lipschitz continuous and δDR
-D-Lipschitz continuous,

(iv) f is δf -Lipschitz continuous and δDS
-D-Lipschitz continuous.

If the following condition (∗) holds:

∣∣∣λ− (1− θ1δHδg)
θ1(δP δDR

+ δfδDS
)

∣∣∣ >
√

(1− 2α+ δ2g)

θ1(δP δDR
+ δfδDS

)
, (∗)
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then the generalized variational inclusion problem involving difference of monotone operators (2)
admits a solution (u∗, w∗, t∗), where u∗ ∈ X,w∗ ∈ R(u∗) and t∗ ∈ S(u∗).

Proof:

To show that the generalized variational inclusion problem involving difference of monotone op-
erators (2) admits a solution, it is enough to show that the mapping F : X → 2X defined by

F (u) =
⋃

w∈R(u),t∈S(u)

{
u− g(u) +RHλ,A [H(g(u)) + λ {P (w) + f(t)}]

}
(10)

has a fixed point u∗. For any u, v ∈ X, a ∈ F (u), b ∈ F (v), there exists w ∈ R(u), w̄ ∈ R(v),
t ∈ S(u), t̄ ∈ S(v) such that

a =
[
u− g(u) +RHλ,A[H (g(u)) + λ{P (w) + f(t)}]

]
,

b =
[
v − g(v) +RHλ,A[H (g(v)) + λ{P (w̄) + f(t̄)}]

]
.

Using the Lipschitz continuity of the resolvent operator RHλ,A, we have

‖a− b‖ = ‖u− g(u) +RHλ,A [H(g(u)) + λ{P (w) + f(t)}]

−
[
v − g(v) +RHλ,A [H(g(v)) + λ{P (w̄) + f(t̄)}]

]
‖

≤ ‖u− v − (g(u)− g(v))‖+ ‖RHλ,A [H(g(u)) + λ{P (w) + f(t)}]
−RHλ,A [H(g(v)) + λ{P (w̄) + f(t̄)}] ‖

≤ ‖u− v − (g(u)− g(v))‖+ θ1 ‖H(g(u))−H(g(v))‖
+θ1λ ‖P (w)− P (w̄) + [f(t)− f(t̄)]‖ . (11)

As g is α-strongly monotone and δg-Lipschitz continuous, we have

‖u− v − (g(u)− g(v))‖2 = ‖u− v‖2 − 2〈g(u)− g(v), u− v〉+ ‖g(u)− g(v)‖2

≤ ‖u− v‖2 − 2α‖u− v‖2 + δ2g‖u− v‖2

= (1− 2α+ δ2g)‖u− v‖2. (12)

Since H is δH-Lipschitz continuous, g is δg-Lipschitz continuous, we have

‖H(g(u))−H(g(v))‖ ≤ δH‖g(u)− g(v)‖
≤ δHδg‖u− v‖. (13)

Since P is δP -Lipschitz continuous and δDR
-D-Lipschitz continuous, f is δf -Lipschitz continuous

and δDS
-D-Lipschitz continuous and using (8), (9) of Algorithm 3.2, we have

‖P (w)− P (w̄) + [f(t)− f(t̄)]‖ ≤ ‖P (w)− P (w̄)‖+ ‖f(t)− f(t̄)‖
≤ δP ‖w − w̄‖+ δf‖t− t̄‖

≤ δPD
(
R(u), R(v)

)
+ δfD

(
S(u), S(v)

)
≤ δP δDR

‖u− v‖+ δfδDS
‖u− v‖

≤ (δP δDR
+ δfδDS

)‖u− v‖. (14)
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Using (12), (13), (14), (11) becomes

‖a− b‖ = (
√

1− 2α+ δ2g)‖u− v‖+ θ1δHδg‖u− v‖+ θ1λ(δP δDR
+ δfδDS

)‖u− v‖

=
[√

1− 2α+ δ2g + θ1δHδg + θ1λ(δP δDR
+ δfδDS

)
]
‖u− v‖

= K(θ)‖u− v‖,

where K(θ) =
[√

1− 2α+ δ2g + θ1δHδg + θ1λ(δP δDR
+ δfδDS

)
]
.

It follows from condition (∗) that K(θ) < 1, since a ∈ F (u) and b ∈ F (v) are arbitrary, we obtain

D(F (u), F (v)) ≤ K(θ)‖u− v‖, ∀u, v ∈ X.

By Theorem 3.1 of Siddiqi and Ansari (1989), F has a fixed point u∗ ∈ X such that w∗ ∈ R(u∗)

and t∗ ∈ S(u∗) and

g(u∗) = RHλ,A[H(g(u∗)) + λ{p(w∗) + f(t∗)}].

Therefore (u∗, w∗, t∗) is a solution of generalized variational inclusion problem involving difference
of monotone operators (2). �

Theorem 4.2.

Let all the conditions of Theorem 4.1 hold and additionally if the following two conditions hold:

(i) limn→∞ ‖en‖ = 0 = limn→∞ ‖rn‖, and
(ii) 0 ≤ βn ≤ αn ≤ 1, for all n &

∑∞
n=0 αn =∞,

then the sequences {un}, {wn} and {tn} defined by Ishikawa type iterative Algorithm 3.2 converge
strongly to u,w and t, respectively, where (u,w, t) is a solution of generalized variational inclusion
problem involving difference of monotone operators (2).

Proof:

By Theorem 4.1, there exists u∗ ∈ X, w∗ ∈ R(u∗), t∗ ∈ S(u∗) such that (u∗, w∗, t∗) is a solution of
generalized variational inclusion problem involving difference of monotone operators (2). For all
n ≥ 0, we have

u∗ = u∗ − g(u∗) +RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]
= (1− αn)u∗ + αn

[
u∗ − g(u∗) +RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]

]
= (1− βn)u∗ + βn

[
u∗ − g(u∗) +RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]

]
.
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By Algorithm 3.2, for each n ≥ 0, we have

‖vn − u∗‖ =
∥∥∥(1− βn)un + βn

[
un − g(un) +RHλ,A [H(g(un)) + λ{P (wn) + f(tn)}]

]
+ βnrn

−
[
(1− βn)u∗ + βn

[
u∗ − g(u∗) +RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]

]] ∥∥∥
≤ (1− βn)‖un − u∗‖+ βn‖un − u∗ −

(
g(un)− g(u∗)

)
‖+ βn‖rn‖

+βn
∥∥RHλ,A [H(g(un)) + λ{P (wn) + f(tn)}]−RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]

∥∥
≤ (1− βn)‖un − u∗‖+ βn‖un − u∗ −

(
g(un)− g(u∗)

)
‖+ βn‖rn‖

+βnθ1 ‖H(g(un))−H(g(u∗))‖+ βnθ1λ‖P (wn)− P (w∗)‖+ βnθ1λ‖f(tn))− f(t∗)‖

≤ (1− βn)‖un − u∗‖+ βn(
√

1− 2α+ δ2g)‖un − u∗‖+ βn‖rn‖

+βnθ1δHδg‖un − u∗‖+ βnθ1λ(δP δDR
+ δfδDS

)‖un − u∗‖
= [(1− βn) + βnK(θ)]‖un − u∗‖+ βn‖rn‖
≤ ‖un − u∗‖+ βn‖rn‖. (15)

Using the same arguments as for (12), (13), (14), we obtain

‖un+1 − u∗‖ ≤
∥∥∥(1− αn)un + αn

[
vn − g(vn) +RHλ,A [H(g(vn)) + λ{P (w̄n) + f(t̄n)}]

]
+ αnen

−
[
(1− αn)u∗ + αn

[
u∗ − g(u∗) +RHλ,A [H(g(u∗)) + λ{P (w∗) + f(t∗)}]

]] ∥∥∥
≤ (1− αn)‖un − u∗‖+ αn‖vn − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+αnθ1‖H(g(vn))−H(g(u∗))‖+ αnθ1λ‖P (w̄n)− P (w∗)‖
+αnθ1λ‖f(t̄n)− f(t∗)‖

= (1− αn)‖un − u∗‖+ αnK(θ)‖vn − u∗‖+ αn‖en‖. (16)

By using (15), we get

‖un+1 − u∗‖ ≤ (1− αn)‖un − u∗‖+ αnK(θ)
[
‖un − u∗‖+ βn‖rn‖

]
+ αn‖en‖

≤ (1− αn)‖un − u∗‖+ αnK(θ)‖un − u∗‖+ αnK(θ)βn‖rn‖+ αn‖en‖
≤ [1− αn + αnK(θ)]‖un − u∗‖+ αnK(θ)βn‖rn‖+ αn‖en‖

=
[
1−

(
1−K(θ)

)
αn

]
‖un − u∗‖+

[
1−

(
1−K(θ)

)
αn

]
βn‖rn‖+ αn‖en‖

≤
[
1−

(
1−K(θ)

)
αn

]
‖un − u∗‖+

(
1−K(θ)

)
αn
‖en‖+ ‖rn‖

1−K(θ)

≤
[
1−

(
1−K(θ)

)
αn

]
‖un − u∗‖+ σn,

where σn =
(

1−K(θ)
)
αn
‖en‖+ ‖rn‖

1−K(θ)
.

Applying condition (i), we have
‖en‖+ ‖rn‖

1−K(θ)
→ 0 as n→∞. Hence σn = O

(
(1−K(θ))αn

)
. Thus,

all the condition of Lemma 2.2 are satisfied, we obtain un → u∗ as n → ∞. Since R and S are
D-Lipschitz continuous operators with constants δDR

and δDS
, respectively , we have

‖wn − w∗‖ = D
(
R(un), R(u∗)

)
≤ δDR

‖un − u∗‖ → 0;

‖tn − t∗‖ = D
(
S(un), S(u∗)

)
≤ δDS

‖un − u∗‖ → 0.
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It follows that wn → w∗ and tn → t∗ as n→∞. �

5. Conclusion

In this paper, we have introduced and studied a new generalized variational inclusion problem
involving difference of monotone operators in Hilbert spaces and have shown that the difference
of monotone operators is equivalent to a fixed point problem. Since the difference of monotone
operators need not be monotone, we have thus considered an interesting problem and we have
established an Ishikawa-type iterative algorithm to find the approximate solution of our problem.
The generalized variational inclusion problem involving difference of monotone operators is ap-
plication oriented and related to DC programming, image restoring process, prox-regularity, multi-
commodity network, tomography, molecular biology, operations research, optimization, basic and
applied sciences, etc.

We are confident that our results are useful for further research and can be extended in higher
dimensional spaces.
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