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Abstract

In this paper we have studied the location and stability of the equilibrium points in the restricted
three body problem by taking into consideration the bigger primary as an uniform circular disc.
We have observed that there exist six collinear (Li, i = 1..6) and two non-collinear (Li, i = 7, 8)
equilibrium points. We have found that the points L1 and L3 move towards the center of mass while
L2, L4, L5 and L6 go away from the center of mass as parameter of mass µ increases. We have also
observed that the points L1, L2 and L3 move away from the primaries and L4 moves toward the
primaries as radius a of the circular disk increases. Also the points L7 and L8 shift towards the
center of mass as µ increases. We have found that equilibrium point L1, L2, L3, L4 and L6 are
unstable where L5, L7 and L8 are stable for the given values of µ and a. We have also derived the
zero velocity curves (ZVC) and periodic orbits around the equilibrium points. We have noticed that
in ZVC the outer oval expands and inner oval slightly shrinks as the value of Jacobian constant C
increases; we have also discussed the motion around the collinear equilibrium points.
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1. Introduction

Restricted three body problem (RTBP) is an important and interesting area of research involving
the study of dynamics of an infinitesimal mass in the gravity field of two finite masses moving
in Keplerian orbits. Due to its applications the restricted three body problem with different per-
turbations as oblateness, prolateness and radiation of the primaries has been studied. Prominent
scientists such as Gauss, Jacobi, Burns, Hill, Lyapunov, Poincare, Painleve, Levi-Civita, Birkhoff,
Chazy, Whittaker, Wintner, N.D. Moiseev, Duboshin, and many others has made huge contribu-
tions to the analytical, qualitative and numerical studies of the restricted three body problem. A
detailed analysis of this problem is illustrated in the work of American mathematician Szebehely
(1967).

Lagrange proved that the restricted three body problem has five libration points, three collinear and
two triangular and later Routh (1875) discussed the stability of libration points. Permissible regions
of motion for third body are established by jacobian integral of restricted problem and using this
Hill (1878) described the motion of the moon. Further, some researchers studied the problem with
one or two bodies as radiating or oblate spheroids or having both effects.

In the restricted three body problem, it is known that celestial bodies are irregular bodies which
cannot be considered as spherical permanent, because the body shape affects the stability of move-
ment. Therefore many mathematician have discussed the restricted three body problem by taking
the different shape of primaries. Sharma et al. (1975) have discussed the restricted three body
problem by taking the both primaries as the oblate bodies. El-Shaboury et al. (1991) discussed the
posibility of the existence of libration points when one of the finite bodies is spherical luminous
and other triaxial non-luminous in photo gravitational circular restricted problem. For the case
when the smaller primary is triaxial rigid body with one of the axes as the axis of symmetry, and
its equatorial plane coinciding with the plane of motion, Khanna et al. (1999) investigated the sta-
tionary solution of planar restricted three body problem. Abdul et al. (2006) studied the stability of
equilibrium points. Abouelmagd et al. (2012) investigated the existence of libration point and their
linear stability when the smaller is an oblate spheroid and the more massive primary is radiating.
Abouelmagd et al. (2012) studied the periodic orbits around the libration points and found these
orbits to be elliptical.

Motivated by the discovery of huge number of galaxies which are in the shape of uniform circular
disk, in this paper, we aim to study the restricted three body problem when one primaries is in the
shape of uniform circular disk. To the best knowledge of authors, the RTBP when one primary is in
shape of circular disk has not yet been studied. The paper is organized as follows. In Section 2 we
derive the equations of motion of infinitesimal mass when bigger primary is a uniform circular disk.
Section 3 deals with the existence of collinear and non-collinear equilibrium points. In Section 4
we discuss the ZVC. Further, in Section 5 we studied the stability of the equilibrium points and
in Section 6 we derive the motion around equilibrium points. Finally, we conclude the paper in
Section 7.
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2. Equation of motion

Let m1 be an uniform circular disk and m2 a point mass (m1 > m2), which are moving in the
circular orbits around their center of mass O. An infinitesimal mass m3 is moving in the plane
of motion of m1 and m2 and distances of m3 from m1, m2 and O are r1, r2 and r respectively
(Figure 1). We wish to find the equations of motion of m3 using the terminology of Szebehely in
synodic system and dimensionless variables i.e. the distance between primary is unity, choose time
t such that the gravitational constant G = 1 and the sum of the masses of the primaries is unity
(m1 +m2 = 1).

The potential of the uniform circular disk (Lass et al. (1983)) at any point P (x, y) is given by

V = −2Gσ[(a+ r1)E(k) + (a− r1)K(k)], (1)

where

• r21 = (x− µ)2 + y2,
• r22 = (x+ 1− µ)2 + y2,
• µ = mass of m2,
• k2 = 4ar

z2+(a+r)2 < 1,
• n2 = 4ar

(a+r)2 < 1,

• E(k) =
∫ π/2
0

√
1− k2 sin2 ψdψ, and

• K(k) =
∫ π/2
0

dψ√
1−k2 sin2 ψ

.

The differentiations of E(k) and K(k) are given by ( Byrd et al. (1971))
∂E(k)

∂k
=
E(k)−K(k)

k
,

∂K(k)

∂k
=
E(k)− (1− k2)K(k)

k(1− k2)
.

Then the equation of motion of m3 in the synodic system and dimensionless variables are:

ẍ− 2nẏ = Ωx =
∂Ω

∂x
, (2)

ÿ + 2nẋ = Ωy =
∂Ω

∂y
, (3)

where n is mean motion of the primaries

Ω =
n2

2
(x2 + y2) +

µ

r2
− V. (4)

The integral analogous to Jacobi integral is

ẋ2 + ẏ2 = 2Ω− C. (5)

For zero velocity surface, we have

2Ω− C = 0. (6)
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Figure 1. The Configuration of the RTBP when m1 is uniform circular disk.

3. Equilibrium points

The particle m3 is at rest at the points making the right hand side of equations (2) and (3) zero.
These points define the equilibrium points of the particle motion and can be found by solving the
equations

Ωx = n2x− µ

r32
(x+ 1− µ) +

2σ(x− µ)

r1
[(E(k)−K(k))(1 +

4a(a− r1)
k(a+ r1)2

)

+
4a(a− r1)2

(a+ r1)3
(
E(k)− (1− k2)K(k)

k(1− k2)
)] = 0 (7)

Ωy = n2y − µ

r32
y +

2σy

r1
[(E(k)−K(k))(1 +

4a(a− r1)
k(a+ r1)2

)

+
4a(a− r1)2

(a+ r1)3
(
E(k)− (1− k2)K(k)

k(1− k2)
)] = 0. (8)

3.1. Collinear equilibrium points

We group the solutions of equation (7) and (8) into two kinds; those with y = 0 ( the collinear
equilibrium points ) and those with y 6= 0 ( the non-collinear equilibrium points). Then we will find
the collinear equilibrium points from the given equation as

n2x− µ

(x+ 1− µ)2
+ 2σ[(E(k)−K(k))(1 +

4a(a− (x− µ))

k(a+ (x− µ))2
)

+
4a(a− (x− µ))2

(a+ (x− µ))3
(
E(k)− (1− k2)K(k)

k(1− k2)
)] = 0. (9)

Here we have observed that there exist six collinear equilibrium points (Li, i = 1, 2, . . .). These
points are plotted in Figure (2). This figure shows that in six collinear equilibrium points three
points lies to the left side of small primary while other three points lies between the primaries.
Figure (3) shows that the points L1 and L3 move towards the center of mass as µ increases and also
move away from the primaries as a increases. Figures (4) and (5) shows that the points L2, L4, L5

and L6 move away from the center of mass as µ increases. We have also observed that the point L2



164 Mohd. Arif and R.K. Sagar

move away from the primaries while L4 shift towards the primaries as a increases but there is no
change in position of the points L5 and L6.

m2

m1

L1 L2 L3 L4L5L6

L7

L8

a=0.03
Μ=0.03
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Figure 2. Location of non-collinear and collinear points
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Figure 3. L1 and L3 when a = .03, .04, .05, .06
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Figure 4. L2 and L4 when a = .03, .04, .05, .06
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Figure 5. L5 and L6 when a = .03, .04, .05, .06
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3.2. Non-collinear equilibrium points

The non-collinear equilibrium points are the solution of the equations (7) and (8) when y 6= 0

and solution of these two equations given in table (7) for different value of µ and a. This table
(7) indicates that there exist two non-collinear equilibrium points L7 and L8 which have the same
ordinates but different abscissas and these abscissas shift towards the center of mass as µ increases.
These points plotted in Figure (2).

4. Zero velocity curve

The equation (6) defines a set of surfaces for particular values of C. These surfaces, known as the
zero velocity surfaces, play an important role in placing bounds on the motion of the particle. The
intersection of the zero velocity surfaces with the xy − plane produces a zero velocity curve. It
is clear that we must always have 2U ≥ C since otherwise the velocity would be complex. Thus
equation (6) defines the boundary curves of regions where particle motion is not possible, in other
words excluded regions. The Figure (6) shows the intersection of the zero velocity surfaces with the
xy− plane. We observed that there exist two ovals around the primaries and the communication or
particle exchange between the primaries is not possible because the motion take place either outside
the outer oval or inside the inner oval (excluded shaded region). From Figure (7), we observed that
the outer oval expand and inner oval slightly shrink as C increases.
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Figure 6. Zero velocity curve when C = 24.63
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Figure 7. Zero velocity curve when C1 < C2 < C3
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5. Stability of the equilibrium points

Let (x0, y0) be the coordinates of any one equilibrium points and let α and β denote the small dis-
placement from the equilibrium points, therefore we have α = x− x0 and β = y − y0.

Put these values of x and y in Equations (2) and (3), we have the variation equation as

α̈− 2nβ̇ = αΩxx + βΩxy,

β̈ + 2nα̇ = αΩyx + βΩyy. (10)

Now, for the non trivial solution the determinant of the coefficients matrix of the above system
must be zero i.e. ∣∣∣∣∣ ξ2 − Ωxx −2ξn− Ωxy

2ξn− Ωyx ξ2 − Ωyy

∣∣∣∣∣ = 0. (11)

Therefore, the characteristic equation of Equations (2) and (3) is

ξ4 + (4n2 − Ωxx − Ωxy)ξ
2 + ΩxxΩyy − (Ωxy)

2 = 0, (12)

which is fourth degree equation in ξ. If all roots are either negative real numbers or pure imaginary,
then equilibrium point (x0, y0) is said to be stable.

We have found that the collinear equilibrium point L1, L2, L3, L4 and L6 are unstable where L5 is
stable for the given values of µ and a ( Table 1 to 6). We have also observed that the non-collinear
equilibrium point L7 and L8 are stable for the given value of µ and a ( Table 7).

6. Motion around equilibrium points

Since the general solution of the equation (10) of the form

α =

4∑
i=1

Aie
ξit,

β =

4∑
i=1

Bie
ξit, (13)

contains one term which is increasing monotonically for t ≥ t0, therefore it gives unbounded values
for α and β as t→∞. The solution is unstable. The coefficients Ai, Bi are not independent and are
related to one another as

Bi =
(ξ2i − Ωxx)

2nξi + Ωxy
Ai = λiAi, (14)
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and these coefficients are completely determined by the initial condition as below

α0 = α(t0) =

4∑
i=1

Aie
ξit0 ,

α̇0 = α̇(t0) =

4∑
i=1

Aiξie
ξit0 ,

β0 = β(t0) =

4∑
i=1

λiAie
ξit0 ,

β̇0 = β̇(t0) =

4∑
i=1

Aiξiλie
ξit0 . (15)

The inversion of this equation gives the coefficients


A1

A2

A3

A4

 = A−1


α0

β0
α̇0

β̇0

 , where A =


1 1 1 1

λ1 λ2 λ3 λ4
ξ1 ξ2 ξ3 ξ4
λ1ξ1 λ2ξ2 λ3ξ3 λ4ξ4

 , (16)

with detA 6= 0.

For collinear equilibrium points Ωxy = 0. The coefficients A1 and A2 are associated with the real
exponents (ξ1 and ξ2). So for these values of A1 and A2, the first two terms on the right side of
equation (13) in the solution represent exponential increase and decay with time. Choose the con-
dition such that A1 = A2 = 0, and evaluate A3 and A4 as function of ξ3, λ3 and initial conditions
t0, α0, β0 and substitute the result in equation (13). We have

α = α0 cos s(t− t0) +
β0
η3

sin s(t− t0),

β = β0 cos s(t− t0)− ξ0η3 sin s(t− t0), (17)

where

ξ3,4 = ±

√(
−4−

√
42 − 4c

2

)
, 4 = 4n2 − Ωxx − Ωxy, c = ΩxxΩyy,

ξ3 = is and λ3 = iη3.

From equation (18), we can obtains

α2 +
β2

η32
= α0

2 +
β0

2

η32
. (18)

This shows that the orbit is an ellipse whose semi major axis is α0
2η3

2+β0
2, the center of this ellipse

is at the equilibrium point and eccentricity e is
√

(1− η3−2) (Figure 8). The motion is periodic with
respect to the rotating frame of reference with the synodic period T = 2π

s .
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Figure 8. Periodic orbits of equilibrium points when a = .03, a = .04 and a = .05
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Remark.

In the case of classical restricted three body problem (when the primaries have no shape), there
exist five possible configuration of the region of motion depending on the value of C, even at the
lower value of C the whole space is allowed to the motion while in our case when we have taken the
shape of one primary as circular disk then there exist only one type of region of motion (Figure 6)
in this case the motion takes place either out side the outer oval or inside the inner oval (excluded
the shaded region). Thus the communication or particle exchange between the primaries is not
possible.

Note: All the equations are solved in the MATHEMATICA 10.

7. Conclusion

In this paper, we have studied the RTBP introducing one primary as an uniform circular disk. We
have obtained the desired equations of motion of our problem and have also found out the collinear
and non-collinear equilibrium points. We observed that the points L1 and L3 move towards the
center of mass while L2, L4, L5 and L6 move away from the center of mass as µ increases. We have
also observed that the points L1, L2 and L3 move away from the primaries and L4 move towards the
primaries but there is no change in the position of the points L5 and L6 as a increases. Further, there
exist two non-collinear equilibrium points L7 and L8 which have the same ordinates but different
abscissas and these abscissas shift towards the center of mass as µ increases. We noticed that the
equilibrium points L1, L2, L3, L4 and L6 are unstable where L5, L7 and L8 are stable for the given
values of µ and a (Table 1 to 7). Here we have also derived the zero velocity curves and observed
that for different values of C there exist two ovals around the primaries.

We observed that the communication or particle exchange between the primaries is not possible
because the motion take place either outside the outer oval or inside the inner oval. Also, the
outer oval expand and inner oval shrink as C increases. The shape of periodic orbits around the
equilibrium points are ellipses.
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Appendix

Table 1. Stability of L1 when a = .05

µ L1 ξ1,2 ξ3,4

.01 -1.24947 ±3.07869 ±4.30497i

.02 -1.22954 ±3.54173 ±4.50464i

.03 -1.20778 ±3.891 ±4.61797i

.04 -1.18284 ±4.47042 ±4.87855i

.05 -1.14985 ±5.41177 ±5.35008i
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Table 2. Stability of L2 when a = .05

µ L2 ξ1,2 ξ3,4

.01 -1.03271 ±18.6689 ±13.7744i

.02 -1.04501 ±14.7923 ±11.1781i

.03 -1.05574 ±12.5731 ±9.72722i

.04 -1.06793 ±10.7842 ±8.57501i

.05 -1.0871 ±9.54141 ±8.54141i

Table 3. Stability of L3 when a = .05

µ L3 ξ1,2 ξ3,4

.01 -0.955315 ±25.9218 ±18.6492i

.02 -0.932267 ±24.1657 ±17.3868i

.03 -0.912613 ±23.5052 ±16.8859i

.04 -0.894665 ±23.1353 ±16.6322i

.05 -0.877783 ±23.0477 ±16.4929i

.06 -0.86164 ±22.9904 ±16.4157i

.07 -0.846045 ±22.986 ±16.376i

.08 -0.830875 ±23.0155 ±16.3605i

.09 -0.816046 ±23.0679 ±16.3612i

.10 -0.801496 ±23.1359 ±16.3733i

Table 4. Stability of L4 when a = .05

µ L4 ξ1,2 ξ3,4

.01 0.057667 ±4367.23 ±661.174i

.02 0.067650 ±4379.52 ±657.657i

.03 0.077633 ±4390.37 ±654.569i

.04 0.087615 ±4399.96 ±646.995i

.05 0.097597 ±4408.28 ±643.397i

.06 0.107578 ±4415.97 ±639.793i

.07 0.11756 ±4420.19 ±636.153i

.08 0.12754 ±4425.55 ±636.497i

.09 0.13752 ±4428.99 ±636.823i

.10 0.14751 ±4430.66 ±636.110i
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Table 5. Stability of L5 when a = .05

µ L5 ξ1,2 ξ3,4

.01 0.0101112 ±39.0629i ±1574.31i

.02 0.0201584 ±46.293i ±1558.93i

.03 0.0301955 ±51.0777i ±1545.2i

.04 0.0402275 ±54.7294i ±1533.4i

.05 0.0502563 ±57.705i ±1519.89i

.06 0.0602829 ±60.2258i ±1507.84i

.07 0.0703078 ±62.4076i ±1496.06i

.08 0.0803315 ±64.3401i ±1484.47i

.09 0.0903542 ±66.0688i ±1473.02i

.10 0.100376 ±67.6225i ±1461.71i

Table 6. Stability of L6 when a = .05

µ L6 ξ1,2 ξ3,4

.01 0.0098925 ±1575.07 ±38.4132i

.02 0.0198476 ±1560.14 ±45.4205i

.03 0.0298128 ±1546.82 ±50.0015i

.04 0.0397832 ±1534.33 ±53.4551i

.05 0.0497569 ±1522.36 ±56.2364i

.06 0.0597328 ±1510.73 ±58.5769i

.07 0.0697104 ±1499.35 ±60.5898i

.08 0.0796894 ±1488.19 ±62.3444i

.09 0.0896693 ±1477.15 ±63.915i

.10 0.0996596 ±1465.98 ±61.870i

Table 7. Stability on L7, L8 when a = .05

µ x y ξ1,2 ξ3,4

.06 -1.1754 ±0.82012 ±1.02636i ±3.49667i

.07 -1.1654 ±0.82012 ±1.03944i ±3.48591i

.08 -1.1554 ±0.82012 ±1.05247i ±3.47508i

.09 -1.1454 ±0.82012 ±1.06546i ±3.46418i


