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Abstract

In this paper, a simple approach is proposed to obtain the best compromise solution of linear multi-
objective transportation problem (MOTP). Using this approach, we get unique efficient solution.
Because unique efficient extreme point obtained by proposed approach directly leads to compro-
mise solution, which is preferred by decision maker. Also this approach is simple to use and less
time consuming. For the application of proposed approach, numerical examples are considered
from existing literature and are solved with proposed method.
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1. Introduction

Generally problem associated with supplying commodities from different sources to various desti-
nation is known as transportation problem (TP), which is basically developed by Hitchcock (1941)
and then by Koopmans (1947). These transportation problems are associated with single objec-
tive. But in real life situations, all organizations wants to achieve multiple objectives while making
transportation of goods. So for making decision about achieving multiple goals simultaneously,
Lee et al. (1973) used goal programming approach and Zeleny (1974) generated non dominated
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basic feasible solution to solve multi-objective linear programming (MOLP). Diaz (1978) pre-
sented an alternative algorithm to obtain all non dominated solutions for MTOP, which dependent
on satisfaction level of the closeness of any compromise solution to the ideal solution. Diaz (1979)
developed a procedure to obtain all non dominated solution for MOTP. Isermann (1979) developed
different procedure to obtain set of efficient solutions.

Aneja et al. (1979) presented an algorithm to obtain non dominated extreme points in the objective
space instead of decision space for bi-criteria TP. In their paper, they also included bottleneck
criteria as third objective. Multi-criteria simplex method to solve MOTP is applied by Gupta et al.
(1983). Ringuest et al. (1987) presented two interactive algorithms to solve MOTP. Kasana et al.
(2000) and Bai et al. (2011) developed different procedures to solve MOTP. Dripping method to
solve bi-objective TP is established by Pandian et al. (2011) and Quddoos et al. (2013a, 2013b)
used lexicographic programming and developed MMK method to solve bi-objective TP. Gupta et
al. (2013) obtained compromise solution for multi-objective chance constraint capicitated TP. Yu
et al. (2014) developed an approach for obtaining the solution of MOTP with interval parameters.
Maity et al. (2014, 2016a) solved multi-choice MOTP and MOTP with interval goal by using utility
function approach. Also Maity et al. (2015, 2016b) developed approaches for solving MOTP with
non linear cost, multi-choice demand and cost reliability under uncertain environment. Nomani et
al. (2017) developed weighed approach based on goal programming to obtain compromise solution
of MOTP, in which according to the prioreties of the decision maker, a new weighted model is
presented to obtain varying solution.

In this paper, we have developed an algorithm which is based on making allocations in the cell with
minimum cost of rth objectives corresponding to the row/column of cell having maximum cost of
rth objective. The main advantage of the proposed algorithm is that the obtained efficient solution
has minimum distance from the ideal solution, which leads to a compromise solution preferred by
the decision maker. Also there is no need to obtain more efficient solutions, so the compromise
solution is obtained in an easy way and with less time by applying the proposed approach.

Paper organization is as follows: Section 2 contains basic definitions from existing literature. Model
representation of MOTP is given in Section 3. Section 4 provides algorithms for proposed methods;
numerical examples and analysis is given in Section 5. The last section contains conclusions.

2. Preliminaries

In this section, some important basic definitions are reviewed Ringuest et al. (1987).

Definition 2.1.

An ideal solution to the multi-objective transportation problem would result in each objective

simultaneously realizing its minimum. That is, if z∗r = min
m∑
i=1

n∑
j=1

crijxij , then the vector z∗ =

(z∗1 ,. . . , z∗k) is an ideal solution. When there is a feasible extreme point x∗ such that z∗1 = z1(x∗),. . .,z∗l
= zk(x∗).
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Definition 2.2.

The best compromise solution may be defined as that solution obtained at a feasible x which is
deemed closest to the ideal solution by the decision maker.

Definition 2.3.

A feasible vector x̄ = {x̄ij} yields a nondominated solution to the multi-objective transportation
problem if, and only if, there is no other feasible vector x = {xij} such that

m∑
i=1

n∑
j=1

crijxij ≤
m∑
i=1

n∑
j=1

crij x̄ij , ∀r and
m∑
i=1

n∑
j=1

crijxij 6=
m∑
i=1

n∑
j=1

crij x̄ij , for some r .

When this relationship holds x̄ is said to be efficient.

3. Model Representation

In real life situations, usually every organizer wants to achieve multiple goals simultaneously while
making transportation of goods. So MOTP developed by researchers to achive multiple goals.
Like classical transportation problem , in MOTP, quantity (xij) is to be transported from sources
i(i = 1, 2, ...,m) to destinations j(j = 1, 2, ..., n) with cost cij , where cij can be transportation cost,
total delivery time, energy consumption or minimizing transportation risk etc. The k objectives z1,
z2,...,zk are to be associated with transportation cost, total delivery time, cost of damage and/or cost
of security etc. So MOTP (η) can be represented mathematically as follows:

Min Z1 =

m∑
i=1

n∑
j=1

cij
1xij

...

Min Zk =

m∑
i=1

n∑
j=1

cij
kxij ,

subject to

m∑
i=1

xij = ai, ai ≥ 0, (i = 1, 2, ...,m)

n∑
j=1

xij = bj , bj ≥ 0, (j = 1, 2, ..., n)

xij ≥ 0, for all i, j and
m∑
i=1

ai =

n∑
j=1

bj ,

where
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cij
r Co-efficient of the r-th objective,

ai supply amount of the product at source i (Si),
bj demand of the product at destination j (Dj),

and ai ≥ 0, bj ≥ 0.

Because of the special structure of the multi-objective transportation model, the problem (η) can
also be represented as Table 1.

Table 1. Tabular representation of model (η).

Destination→
source ↓ D1 D2 . . . Dn supply(ai)

c111 c112 . . . c11n
c211 c212 . . . c21n

S1
...

...
...

... a1
ck11 ck12 . . . ck1n
c121 c122 . . . c12n
c221 c222 . . . c22n

S2
...

...
...

... a2
ck21 ck22 . . . ck2n

...
...

... . . .
...

...
c1m1 c1m2 . . . c1mn

c2m1 c2m2 . . . c2mn

Sm
...

...
...

... am
ckm1 ckm2 . . . ckmn

Demand (bj) b1 b2 . . . bn

Remark.

The problem (η) is always considered to be balanced, i.e.,
m∑
i=1

ai =

n∑
j=1

bj . Because if it is not

balanced then we can make it balanced easily.

4. Algorithm for Proposed Method

As to solve multi-objective problems, it is necessary to find the efficient solution which should
be very close to ideal solution. Here we have proposed an easy technique to find unique efficient
solution, which leads to compromise solution. Given steps are followed to proceed with proposed
algorithm:

Step 1:
Formulate the given TP into the form of problem (η) and represent as Table 1.

Step 2:
Identify
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Maximum row cost (α) as αr
i=max (crij), for fixed i, 1 ≤ j ≤ n and 1 ≤ r ≤ k,

Maximum column cost (β) as βrj=max (crij), for fixed j, 1 ≤ i ≤ m and 1 ≤ r ≤ k,
where α = {α1

1,. . . , αr
1;. . . ;α1

m,. . . , αr
m} and β = {β11 ,. . . , βk1 ;. . . ;β1n,. . . , βkn}.

Represent these sets α and β in multi-objective transportation table as shown in table 2.

Table 2. Tabular representation of Step 2.

Destination→
source ↓ D1 D2 . . . Dn supply(ai) α

c111 c112 . . . c11n α1
1

c211 c212 . . . c21n α2
1

S1
...

...
...

... a1
...

ck11 ck12 . . . ck1n αk
1

c121 c122 . . . c12n α1
2

c221 c222 . . . c22n α2
2

S2
...

...
...

... a2
...

ck21 ck22 . . . ck2n αk
2

...
...

... . . .
...

...
...

c1m1 c1m2 . . . c1mn α1
m

c2m1 c2m2 . . . c2mn α2
m

Sm
...

...
...

... am
...

ckm1 ckm2 . . . ckmn αk
m

Demand (bj) b1 b2 . . . bn

β11 β12 . . . β1n
β21 β22 . . . β2n

β
...

...
...

...
βk1 βk2 . . . βkn

Step 3:
Choose

Q = max
1≤i≤m,1≤j≤n

(αr
i , β

r
j ),∀r.

Step 4:
Choose the cell (C) having Q as one of its objective value. If there exist more than one cell (C)
then select the one, which has maximum cost for another objectives.

Step 5:

Choose the cell containing min

(
m∑
i=1

crij , for fixed j

)
in corresponding row or column of cell cho-

sen in Step 4. If tie occurs, then select the one to which maximum allocation is possible.

Step 6:
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Make maximum possible allocation to the cell selected in Step 5 and cross out the row or column
for which supply/demand is satisfied.

Step 7:
Repeat the procedure of Step 3 to Step 6 for remaining sources and destinations until whole supply
or demand requirements are not met.

Now we interpret the proposed method with the help of example as follows:

Step 1.
Consider MOTP in tabular form as same as table 1.

Table 3. Input data of MOTP considered for interpretation of proposed method.

Destination→
source ↓ D1 D2 D3 supply(ai)
S1 3 4 5 8

5 2 1
S2 4 5 2 5

3 4 3
S3 5 1 2 2

2 3 1
Demand (bj) 7 4 4

Step 2.
Calculate maximum row cost α as

α1
1= max{3, 4, 5}=5, α2

1= max{5, 2, 1}=5,
α1
2= max{4, 5, 2}=5, α2

2= max{3, 4, 3}=4,
α1
3= max{5, 1, 2}= 5, α2

3= max{2, 3, 1}=3.

and maximum column cost β as

β11= max{3, 4, 5}=5, β21= max{5, 3, 2}=5,
β12= max{4, 5, 1}=5, β22= max{2, 4, 3}=4,
β13= max{5, 2, 2}=5, β23= max{1, 3, 1}=3.

Represent α and β in table 4.

Step 3.
Calculate

Q = max
1≤i≤3,1≤j≤3

(αr
i , β

r
j ),∀r = max{5, 4, 3} = 5.
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Table 4. Initial procedure of proposed algorithm.

Destination→
source ↓ D1 D2 D3 supply(ai) α

S1 3 4 5 8 5
5 2 1 5

S2 4 5 2 5 5
3 4 3 4

S3 5 1 2© 2 2 5
2 3 1 3

Demand (bj) 7 4 4
β 5 5 5

5 4 3

Step 4.
Cells cr11, cr13, cr22, cr31 have one of objective value 5. But we have to select only one cell. So ac-
cording to proposed method, from selected cells, cr22 has maximum cost 4 for another objective.
Therefore we select cr22.

Step 5.
As cr32 has minimum (1 + 3 =4) cost, so we make allocation min{2, 4}=2 in the cell cr32 and cross
out 3rd row of table 4 for which supply S3 is satisfied.

Again value of Q for remaining rows and columns is

Q = max
1≤i≤2,1≤j≤3

(αr
i , β

r
j ),∀r = max{5, 4, 3} = 5,

and on repeating Step 3 to Step 5 for uncrossed rows and columns, we get second allocation as 4
in the cell cr23 and cross out the 3rd column, for which demand D3 is satisfied.

So by proceeding with the procedure of step 3 to step 5 for making allocations in remaining rows
and columns, we get 3rd, 4th and 5th allocations as 2, 1, and 6 in cells cr12, cr21 and cr11 respectively
and are shown in table 5. Therefore the obtained efficient solution from table 5 is (40, 55).

5. Numerical Examples and Analysis

For proving the effectiveness of our proposed algorithm, we have considered 2 examples from
existing literature and solved using our proposed method. Input data of examples is given in table
6.

On obtaining the solution of both examples by applying proposed method and ideal solution ac-
cording to def. 2.1, the results are given in table 7.

So from table 7, it is analyzed that our proposed method gives efficient solution with less calcu-
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Table 5. Final solution table.

Destination→
source ↓ D1 D2 D3 supply(ai) α

S1 3 6© 4 2© 5 8 5
5 2 1 5

S2 4 1© 5 2 4© 5 5
3 4 3 4

S3 5 1 2© 2 2 5
2 3 1 3

Demand (bj) 7 4 4
β 5 5 5

5 4 3

Table 6. Input data and source of Examples taken from literature.

Ex. Input Data Source
1 [c1ij ]3×4=[1 2 7 7; 1 9 3 4; 8 9 4 6]; [c2ij ]3×4=[4 4

3 4; 5 8 9 10 ; 6 2 5 1];
[ai]3×1=[8, 19, 17]; [bj ]1×4=[11, 3, 14, 16]

Aneja et al. (1979)

2 [c1ij ]4×5=[9 12 9 6 9; 7 3 7 7 5; 6 5 9 11 3; 6 8 11
2 2]; [c2ij ]4×5=[2 9 8 1 4; 1 9 9 5 2; 8 1 8 4 5; 2 8
6 9 8]; [c3ij ]4×5=[2 4 6 3 6; 4 8 4 9 2; 5 3 5 3 6; 6
9 6 3 1]; [ai]4×1=[5, 4, 2, 9]; [bj ]1×5=[4, 4, 6, 2,
4]

Diaz (1979)

Table 7. Result (efficient solution using proposed algorithm and ideal solution).

Ex. Obtained Allocations Obtained Cost Ideal Solution
1 x11 = 0,x12 = 3, x13 = 5,x14 = 0,x21

= 11,x22 = 0 x23 = 8, x24 = 0, x31 =
0, x32=0,x33 = 1,x34 = 16

(176, 175) (143, 167)

2 x11 = 3,x12 = 0,x13 = 0,x14 = 2,x15
= 0,x21 = 0, x22 = 2,x23 = 2, x24 =
0,x25 = 0x31 = 0, x32 = 2, x33 = 0,x34
= 0, x35 = 0,x41 = 1,x42 = 0,x43 =
4,x44 = 0,x45 = 4

(127, 104, 76) (102, 72, 64)

lation and in simple way. It has minimum distance from ideal solution. Because for example 1,
Ringuest et al. (1987) obtained (156, 200),Aneja et al. (1979) and Quddoos et al. (2013a) com-
puted (176, 175) as efficient solution and all algorithms applied by these researchers need long
procedure to obtain efficient solutions and are difficult to apply. But it is very easy to obtain most
efficient solution by our proposed algorithm. Also for example 2, Nomani et al. (2017) obtained
(127, 104, 76) as the efficient solution which is same as our proposed approach. But their algorithm
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takes more time and efforts comparative to our proposed algorithm.

6. Conclusions

From above analysis, it is analyzed that the proposed algorithm gives unique efficient solution.
There is no need to obtain efficient solution more than one. Because obtained unique solution used
to give compromise solution, which is preferred by decision maker. This method can be easily
used to solve large scale MOTP and better decisions can be made in less time. So, it can be more
suitable to apply for each decision maker.
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