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Abstract

In the present paper, generalized Szdsz—Mirakyan operators in exponential weighted space of func-
tions of one variable are introduced. Using a method given by Rempulska and Walczak, some the-
orems on the degree of approximation are investigated. Furthermore, a numerical example with an
illustrative graphic is given to show comparison for the error estimates of the operators.
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1. Introduction

Let f be a function defined on [0, o). The Szdsz-Mirakyan operators .S, applied to f are given by

k

S (f;0) = 6"”;]‘ (fj) )

(D

Becker et. al. investigated the approximation properties of the operators S,, in the exponential
weight space and proved main approximation theorems for these operators. In 2002, Ispir and
Atakut modified the operator S,, as follows:
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> k
Si(fi) = prlana) s (b> . zeR, @)
k=0
where
k
pk(anx) — e—a”x (aT]:j") ,

Rp = [0,00), {an} and {b,} are increasing and unbounded sequences of positive numbers such that

1 . 1
lim — =0, “:1+0<>.

n—oo by, by, by,

It is easily seen that S} (f;x) is a positive linear operator. When a,, = b, = n in (2), we obtain the
original Szdsz-Mirakyan operators given in (1) . Ispir and Atakut (2002) and Walczak (2002) studied
some approximation properties of these operators in polynomial weighted spaces of continuous
and unbounded functions defined on positive semi-axis. Ispir and Atakut also obtained the order of
approximation and investigated the bivariate case of the operators.

Herzog (2003) investigated Szdsz-Mirakyan type operators defined by modified Bessel functions.
Besides this paper, Herzog (2015) also presented the approximation properties of these operators
for functions from exponential weight spaces. The bivariate version of the same operators are also
introduced by the same author.

Before proceeding further, let us first introduce the exponential weighted spaces, which in this
paper we denote by C,, for r > 0 a fixed number. Let C (Ry) be the set of all real-valued functions
continuous on Ry = [0, 00). The exponential weighted space is defined as

C, ={f € C(Ry) : vf is uniformly continuous and bounded on Ry}, 3)

where v, is the exponential weight function defined by

vp(z) :=e ", v € Ry :=[0,00). 4)
The norm in this space is given by the formula

£l = If Ol = sup v (@) |f ()] ®)

ZBGRO

Rempulska and Walczak examined the approximation properties of the following modified Szasz-
Mirakyan operators,
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St = (L) oo aen ©)
k=0

for function f € B,, where B,,r > 0, denotes the space of all real-valued functions f defined on
Ry for which v, f 1s bounded function on R, and the norm is given by (5).

Note that, in this paper we consider the modulus of continuity of f € C,,
wi(f; Cpit) == sup [|Anf ()ll,
0<h<t
and modulus of smoothness of f € C,.,
wo(f; Crit) = sup [[ARF (),
0<h<t

for t > 0, where

Apf(x) = fle+h) = f(z),  ARf(x):= f(z) = 2f(z +h) + f(z+2h),
for z,h € Ry. (See De Vore and Lorentz (1993)). Moreover, for fixed m € N, the function space
C;" 1s defined as
om = {f eC: f® e k= 12m}
Inspired by the method used by Ispir and Atakut (2002) as well as Rempulska and Walczak (2001),

we generalize the operators S, (f;r;z) given in (6) with the help of the sequences (a,) and (b,,).
For functions f € B, and n € N, we define the following generalized Sz4sz-Mirakyan operators

o k
f (O) ) z =0,
where
k
pk(anm) = e_a"xmkf), (8)

Ry = [0,0), {a,,} and {b,} are given increasing and unbounded sequences of positive numbers
satisying the conditions
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1 an 1
< 1 = =
R S 1+O<r+bn>’ ®

for all n € N. We shall prove some approximation theorems in the exponential weighted space
of functions by these generalized operators. We will give some auxiliary Lemmas in Section 2.
Section 3 is devoted to our main results. We shall prove our approximation theorems in this section.

2. Auxiliary Results and Lemmas

In this section we shall mention basic properties of the operators S} (f;r, x).We also give some
auxiliary Lemmas that we need when proving our main results.

Lemma 2.1.

For eachn € N,z € Ry and r > 0, we have

S’;: (]‘7r7 'iU) - 17
aAn X
n( ' x) 7“+bn’
2
§* (21 ) = 2T (@) 10)
(r+by)
St((t—m)ima) =2 | —2—1
n ) b - 7“_‘_ bn 5
2 (a,, — b))+ a,
S;((t—x)Q;r,x>:x (an = (r+ )2) T ant
(r+bp)
Lemma 2.2.
For each n € N,z € Ry and » > 0, we have
Sk(era) = e?,
* rt anx T cox
)= e 11
Sn(te J“,(L’) Y’—I-bne e R ( )
* t26rt;7°;1' — %efbn an:ceﬁ +1 ecnx’
where
Cn 1= tn (e - 1) ' (12)

By elementary calculations we get the equalities given above. So we omit the proofs.
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With the help of the identities in (10), (11) and (12), we shall prove two main lemmas.

Lemma 2.3.

Let » > 0 be a fixed number. For all n € Nand f € B,, we have
’ Sy (1; T, )
vy

From the series expansion of the exponential function one can find

<1 (13)

r

Proof:

an

n <er+bn . 1) < (14)
from which we have ¢, — r < 0 by (9). Since
vr(x)S; L'r o (15)
T n Uy (t) s Iy ’
by (5) and the above inequality, we get the desired result. n

Theorem 2.4.

Let r > 0 be a fixed number. For all n € N and f € B,, we have

155 (5 )l < I (16)

Proof:

From (13) and from the definiton of the norm on the space B,, we get

155 (s, )l = sup v () [y, (f(8); 7, @) < sup vy () Sy (£ ()57, @)

zERy zERy

= sup v (x)S,

sup 1,(0)S; (120) 0 57 )
191, 500 v, (0% 5770 )

rE€Ry
< Ifll, - u

IN

Inequality (16) shows that S} (f;r, x) is a positive linear operator from the space B, into C,.
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Lemma 2.5.

For every fixed » > 0, for all z € Ry and n € N we have

a 2 r 2
n__q 2
<r+bn > +<r—|—bn>]x

An r/(r+bn)
+ ———e¢ x. 17
(r+ bn)2 17

v (z) Sy, (t= 1:)2'7"35 < 22/ (r+bn)
T n 1/7» (t) ) ) iy

Proof:

Since S} ((t — x)2 ert:r; x) =S (th”; r; x) — 228} (te”; r; x) + 228} (e”;r; J:), with the help of
the equalities in (11), we have

QAp T _r _r QAp T _r
S ( t—xz)2 et x) = " _errim {a Tertin 4 1} et — Qp—_erivn e 4 g2eln®
(=) (r + bn)? " "+ by
2
_ 2 an r/(r+bn) ) and r/(r+b,) ChT
=<z’ | ——e —-1) +—e et (18)
{ <r+bn (r + D)

where ¢, is given in (12). Using the inequalities (a + b)? < 2(a® + b%) and e — 1 < te! for t > 0,
we get

2 2
O b)) 1) <9 d (9 ) g2/ (/b)) 1)
(7" + bne - T+ by ‘ - (e )
a 2 r 2
S 262T/(T+b") n 1 4 )
r+ by, r + by,

Hence, from (18) we have,

v (z) Sy, (t —=)° | < 2x2e?/(7Fbe) In_ : + r )
" "\t - r+b, r+b,

and r/(r Cn—T)X
el m)}eu . (19)

which yields the result. [

3. Approximation Theorems

In this section we will give our main results on the approximation of the operators S (f;r; x).

Theorem 3.1.

Letr > 0 and zyp € Ry be a point of continuity of f. Then for f € B,, we have
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Tim S (f;7,20) = f(z0)- 20)

Proof:

Let zo > 0. From (7) and (10) we obtain

S5 (fsra0) — flwo) = gpkwnmo) <f ( - bn) - f(a:o)>  nen

From the hypothesis of the theorem, there exists a number 6 = §(e; zp) > 0 such that,

k €
(15 ) - )| < 5 @1
for (+kb) — 9| < 4. On the other hand, the linearity of S implies
r n
* k
@15 (frsae) = Fall 30 vl oo |£ (5 ) = £ ao)
|/ (r+by ) —xo| <6 "
k
+ > vy (z0) pr(ano) | f <r+b ) = f (o)
[k/(r+bn)—o| 20 "
=1 + I.
From (21), we have forall n € N
I = > vr (%0) pr(ano) f< i ) — [ (o)
" " r =+ by
|k/(r+b,)—x0|<d
< fiy (20) i (anmo) = =. (22)
2 " " 2
k=0
k. >5theni ko 2>1 For f € B, we also have
rtby o= e\, ) = r

S Hf”r (e'r'k/('r~+bn) + erzo) , kc N(),TL e N.

(5 ) - st

Hence, we can write
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k
b= Y wmlen |f () - F @
k/(r+by)—z0|>6 "

1 T T T k 2
<|Ifll, SaVr (zo) Z pr(ano) (e k/(r+bn) 4 ¢ 0) <<r " > — xo)

|k/(r+b,)—x0|>6

<5l 55 [ o) 85 (7 6 = 0)? 750 ) + 85 (6 = 20)? 7320

From the last identity in (10) and from Lemma 2.5, we eventually have

1 a/'n, ? /T
bé\er(sg{(Hb —1) <1+262 /( +bn)> 2

2
r Gnp r/(r
+2627‘/(7’+bn) (,’,._i_b> 1’% —+ m(e /(r+b,) + 1)'170} . (23)

Hence, for fixed positive zo, and || f||, there exists ng € N and for all n > ng

k
S v (20) pilano) f<r+b )—f(xo) < g (24)
|k/(r+by) —0| 26 "
From (22) and (24) we obtain
vr (20) |5y, (firswo) — f (zo)| <e. (25)
which yields
lim S} (f;r,x0) = f(zo). n

n—oo

Now we establish the next theorem.

Theorem 3.2.

Let C? be the space of functions such that f, f” € C,..If r > 0 and f € C? then forall z € Ry,n € N
we have
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IS5 (f (t)sm2) — £, < || )],

(7%
r+b

_1‘
2
+Hf”Hr{<rinb _1> (14 2¢2/040)
2
+2€2T/(T+bn)< " ) —|-( an 2(er/(r+bn)+1)}7

r+ by r+ by)

where

U(z) = (1+22)71, x € Ry.

Proof:

Let » € Ry be a fixed point. Using Taylor’s formula for f € C? and ¢t € Ry, we have

t

£(t) = £(2) + F (@)t — )+ / (t—u) ' (u)du.

T

Applying the operator S} (f;r, x) to the both side of the above equality, we get

SﬂﬂﬂWﬂﬂ=f@ﬂ+f¥@5ﬂ@—x%n@+ﬁﬁ</(t—Wf”WﬁmWAﬁ,neN.

For the integral term above, we can write

[ = wan

S Hf//

Multiplying both side of (28) by v, (x) and then using (29), we get,

vy (@) |55 (F @ 3m50) = f @) < ||| 185 (= a)ims)l +

i

By using (10) and Lemma 2.5, we finally get

(26)

27)

(28)

(29)

. {I/r (x) Sy <(ty:(f))2;r; m) + Sy ((t — )2 x) } )
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an

r+ by,

2
+1£7]. { (T i"bn - 1) (14262000 42

2
1 9e2r/(r+b,) <7«_:b) 22 1 (Tfir;))Q(er/(an) 4 1);15} , 30)

ve () 1S5 (F (8)sm,2) — f ()] < || )], -1

T

from which can write

vy (2) (S5 (F () ims2) — 1Yol < |1F],

an T
T+ by 1+ a2

" An ’ 2 /(b)) T
IS (G ) ()

2
+2€2r/(r+bn)< r ) a?

r+b,) 1+x2
n r/(r+b) 4y F 1
+(r+bn)2(6 ey @D
Taking the supremum of both sides, we get the desired result. n

Theorem 3.3.

Let r > 0 be a fixed number. Foralln € N,z € Ry and f € C, , we have

(S5 (frim,-) = fn) O, < 5™ wy (5 Cr, Gny) + (207 + 9€®)wa (f; Cry ) » (32)
where
Op,r = max {(5,1”, 2
neEN,r>0 & T
with
L= 52, = (Lt (33)
n,r r + bn ) n,r — (’I” ‘|‘ bn)2 .
Proof:

Let z € Ry and f} be the second order Steklov mean of f € C,, i.e,

4 h/2 h/2
fh(:z;)::hz/ / (2f @+s+1)— flz+2(s+)}dsdt, 7 € Ro,h > 0.
0 0
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Notice that
h/2  h/2
f(@) = fu(z) = o5 / / A2 dsdt.

1 h/2
£ (2) = hQ/O [88n/2f (x + ) — 200 f (z + 25)] ds.

i () = g [883 o () ~ 83 ()]

From the definition of norm and the modulus of continuity and smoothness of f € C,, we get

11 = fall, Swn (£:Cri). (34)
il < 56z (7 i), (35)
[ < 2he (7 Gy (36)

The above inequalities imply that if f € C,, the Steklov mean f;,, f; and f, belongs to C.

By the linearity of the operator we can write,

v (@) S, (fs @) = f()] < v (@) {155 (f = fusm )|+ 1S5 (fus 7y @) = fu(2)]
+fn(z) = ()]}, (37)

for z > 0,h > 0 and n € N, from which we have,

1055 (f5m) = ) ¥,
<180 (f = fusrs ) Wl 4+ 11(S (fas ) = fu) Cll, + 1(fa = 1) ¥, - (38)

By (16), (27) and (34), we get

155 (f = fuirs ) ¥l < U = fall, < w2 (f;Crih), (39)

forn € N and h > 0. Applying Theorem 3.2, using (35) and (36), we get,
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10Sn (fnims) = fu) ¥, < ‘r j—nbn — 1' Hthr + |71, { (T inbn — 1>2 <1 + 262T/(T+bn)>

2
+2€2’r’/(7‘+bn) < r > + ( (079 (er/(T'i'bn) + 1)}

r+ by, T+ by)?

1 a
< e = AN | o)
=2 h‘(r+bn) ‘M(f’ )

9 an ? 2/ (r+by)

2
r Qn T /(r+0b,
2 <r+b> o *b't>+1>}w2<f;cr,h>, (40)

forn € N and h > 0. By making some computations, we can rewrite (40) as,

h ’I”+b W1(f,Cr,h)

9 0 2
+ﬁ {(Tib _ 1> (1+2€27'/(7"+bn)>}(,U2 (f,Cr,h>

198 [ 72 +ay,
ﬁ <(7“+bn)2> w2 (f7 Cr, h)

= A1 + Ay, 41)

1S5 (fnsr ) — i) @), < 5 ' )

where A; is the first two terms and Aj is the last term on the right hand side of the above inequality.

Now, for Ay, setting h = ¢, . where 6, =

~4— — 1|, and for A, setting h = 47, . where &, =

( (::J;‘z)z> for fixed n € N and r > 0, we get

1(Sn (fuir, ) = fu) @, < 5e™nrwy (f5Cr, 05 ,) + 9(1 + 2w (£ Cr, 00 )
+198ws (f; Cr, 02 ) -

Finally, taking

§= max {6 &2
nEN,r>0{ T T

we get the inequality (32). n

Theorem 3.3 implies the following.
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Figure 1. Curves for the error estimates of Sy, (f;7; ) (black) and S, (f;7; z) (yellow) with f(z) = 2 (red).

Corollary 3.4.
Let f € C;, r > 0. Then for the operator S, we have

lim S (f;r;z) — f(z) =0, x € Ry.

n—oo

The convergence is uniform on every interval [z, x3],z2 > z1 > 0.

In the following example we show a comparison for the error estimates of the operators S,, (f;r;x)
and S} (f;r;z) by using the software "MAPLE".

Example 3.5.

Choosing f(x) = 22, we compute the error estimations of Szdsz-Mirakyan operators S, (f;7;z)
given in (6) and generalized Szdsz-Mirakyan operators S} (f;r;x) given in (9). Here we take
an =2n,b, =2n+ 1, r = 8,n = 40.

Table 1. Error Estimates of Sy, (f;r;x) and Sy, (f;r;z) forz = 1,2, 3.

x | Error bound for S, (f;r;z) | Error bound for S} (f;r;x)
1 0.2881944 0.1819215
2 1.1875000 0.7478854
3 2.6979167 1.6978917
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4. Conclusion

In this paper, using the method given by Rempulska and Walczak, we give theorems on the degree
of approximation of generalized Szasz—Mirakyan operators in exponential weighted space of func-
tion of one variable. As is seen from the graph, when examining the error bounds for two operators,
with an appropriate choice of the sequences (a,) and (b,), satisfying the conditions given in (9),
we obtain better convergence results.
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