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Abstract 
 
In actuary, the derivation of loss distributions from insurance data is of great interest. Fitting an 

adequate distribution to real insurance data is not an easy task, mainly due to the nature of the data, 

which shows several features to be accounted for. Although, because of its stochastic and numerical 

simplicity, it is often assumed that the involved financial risk factors are normally distributed, but 

empirical studies indicate that most of financial risk factors have distributions with high peaks and 

heavy tails. Thus, it is important in the actuarial science to model insurance risks with skewed 

distributions. Claims size data in non-life insurance policies are very skewed and exhibit high 

kurtosis and extreme tails. Skew distributions are reasonable models for describing claims in 

property-liability insurance. We fit several well-known skew distributions (skew-normal, skew-

Laplace, generalized logistic, generalized hyperbolic, variance gamma, normal inverse Gaussian, 

Marshal-Olkin Log-Logistic and Kumaraswamy Marshal-Olkin Log-Logistic distributions) to the 

amount of automobile accident claims for property damage to a third party. The data are from 

financial records of a state-owned major general insurance company in Iran. The fitted models are 

compared using AIC (Akaike information criterion), BIC (Bayesian information criterion) and 

Kolmogorov-Smirnov goodness-of-fit test statistics. We find that the Kumarasamy Marshal-Olkin 

Log-Logistic distribution is better than other considered distributions in describing the features of the 

observed data. This distribution is a very perfect distribution to describe the skew data. The value at 

risk and conditional tail expectation, as most common risk measures in insurance, are estimated for 

the data under consideration. 
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1. Introduction 

The derivation of loss distributions from insurance data is of great interest in actuary (Burnecki 

et al. (2005), Chen et al. (2008)). For example, an accurate estimate of the claims distribution 

makes it possible to obtain accurate predictions for pricing, accurate estimation of future 

company liabilities and better understanding of the implications of the claims to the solvency of 

the company (Frees and Valdez (2008)). However, fitting an adequate distribution to real 

insurance data is not an easy task, mainly due to the nature of the data, which shows several 

features to be accounted for (Eling (2012)). 

 Although, because of its stochastic and numerical simplicity, it is often assumed that the 

involved financial risk factors are normally distributed, empirical studies indicate that most of 

financial risk factors have distributions with high peaks and heavy tails (Chen et al. (2008)). 

Specifically, claims size data in non-life insurance policies are very skewed and exhibit high 

kurtosis and extreme tails (see Lane (2000); Embrechts et al. (2002); Vernic (2006); Frees and 

Valdez (2008)). Thus, it is important in the actuarial science to model insurance risks with 

skewed distributions. To this end, several skew distributions, such as skew-normal (Azzalini 

(1985)) and other distributions from the skew-elliptical class, generalized logistic distributions 

(Gupta and Kundu (2010)) and generalized hyperbolic distributions (Barndorff-Nielsen (1977)), 

are promising candidates for modelling claims distribution. 

Along this line, Eling (2012) showed that the skew-normal and the skew-Student t  distributions 

are reasonably competitive compared to some models when describing insurance data. Bolance 

et al. (2008) provided strong empirical evidence in favour of the use of the skew-normal, and 

log-skew-normal distributions to model bivariate claims data from the Spanish motor insurance 

industry (see also Vernic (2006)). Ahn et al. (2012) used the log-phase-type distribution as a 

parametric alternative in fitting heavy tailed data. In the study of Burnecki et al. (2005) usual 

claims distributions showed the presence of small, medium and large size claims, which are 

characteristics that are hardly compatible with the choice of fitting a single parametric analytical 

distribution. Chen et al. (2008) employed generalized hyperbolic distributions for modelling 

insurance data. Frees and Valdez (2008) used skew distributions for conditional distribution of 

claim sizes given the number and type of the claims. 

In this paper, we consider an Iranian insurance company data set consisting of the amount of 

automobile accident claims for property damage to a third party. We fit skew-normal, skew-

Laplace, generalized logistic, generalized hyperbolic, variance gamma, normal inverse Gaussian, 

Marshal-Olkin Log-Logistic and Kumaraswamy Marshal-Olkin Log-Logistic distributions to the 

data and compare the fitted models. The two last distributions are a couple of recently developed 

skew distributions which are more flexible and potentially more apt to a better fit. The rest of the 

paper is organized as follows: section 2 reviews two basic risk measures in actuary and section 3 

provides a background on the considered skew distributions. The data are introduced in section 

4. Results from fitting the model to the data are presented in section 5. The paper concludes in 

section 6 with some discussions. 
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2. Risk Measures 
 

One of the most challenging tasks in the analysis of financial markets is to measure and manage 

risks properly (Chen et al. (2008)). Different risk measures and their properties have been widely 

studied in the literature (see Artzner et al. (1999); Dhaene et al. (2006); Jorion (2007); McNeil et 

al. (2010), and references therein). Most of the contributions and applications in risk 

management usually assume a parametric distribution for the loss random variable. 

 

In collective risk theory, the aggregate claims process is defined as 𝑆𝑡 = ∑ 𝑋𝑗,      𝑡 ≥ 0
𝑁𝑡
𝑗=1 , 

where 𝑁𝑡 is is the total number of claims in the time interval [0, 𝑡] and 𝑋1, 𝑋2, … are claim sizes 

(severities). Typically, the claim arrival point process {𝑁𝑡, 𝑡 ≥ 0} is assumed to be a 

homogeneous Poisson process and the claim size sequence {𝑋1, 𝑋2, … } is assumed to be an i.i.d. 

sequence of random variables with a distribution function 𝐹𝑋(. ). Usually, 𝐹𝑋(. ) is assumed to be 

absolutely continuous with probability density function 𝑓𝑋(. ). Moreover, it is assumed that the 

second moment of the claim size variable 𝑋𝑗  is finite; i.e. 𝐸[𝑋𝑗
2] < ∞. The standard choices for 

𝐹𝑋(. ) are exponential, gamma, Weibull, Pareto, log-normal and mixture distributions. An 

insurance company needs to assess the claim size distribution 𝐹𝑋(. ) in order to appropriately 

charge a premium to take responsibility for the risk. 

 

2.1. Value at Risk 

 

Among different risk measures, Value at Risk (VaR) has become the standard measure of the 

market risk (Chen et al. (2008)) and it is widely used in applications (Artzner et al. (1999)). The 

VaR risk measure was actually in use by actuaries long before it was reinvented for investment 

banking. In actuarial context it is known as the quantile risk measure or quantile premium 

principle (Dhaene et al. (2006); Jorion (2007)). VaR is always specified with a given confidence 

level 0 ≤ 𝛾 ≤ 1. In broad terms, the 𝛾-VaR represents the loss that, with probability 𝛾, will not 

be exceeded. More precisely, the 𝛾-VaR of the claim size variable 𝑋, or the claim size 

distribution 𝐹𝑋(. ), is defined as (Jorion (2007))  

𝑉𝑎𝑅𝛾(𝑋) = inf{𝑥 ∈ 𝑅: 𝐹𝑋(𝑥) ≥ 𝛾} = 𝐹𝑋
−1(𝛾).                                                               (1) 

 The 𝛾-VaR assesses the extreme claims, where extreme is defined as the event with a 1 − 𝛾 

probability. The behaviour of the claim size distribution 𝑓𝑋(. ) above the 𝛾-quantile does not 

affect the value of 𝛾-VaR.  In other words, the definition of VaR in (1) does not take into 

consideration what the claim will be if  "the 1 − 𝛾 extreme claim" actually occur. 

2.2. Conditional Tail Expectation  

The conditional tail expectation (CTE) of the claim size variable 𝑋 was introduced to address 

some of the problems with the 𝑉𝑎𝑅𝛾(𝑋). It is also called tail value at risk (TVaR), tail 

conditional expectation (TCE) and expected shortfall (Dickson et al. (2013)). Given the 

confidence level 𝛾, 0 ≤ 𝛾 ≤ 1, the CTE is the expected claim given that the claim falls in the 

1 − 𝛾 extreme part of the claim size distribution. The 1 − 𝛾 extreme part of the claim size 
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distribution is the part above the 𝛾-VaR. Thus, given 𝑉𝑎𝑅𝛾(𝑋) and assuming 𝐹𝑋 is continuous at 

𝑉𝑎𝑅𝛾(𝑋), the CTE at confidence level 𝛾 is defined by  

𝐶𝑇𝐸𝛾(𝑋) = 𝐸[𝑋|𝑋 ≥ 𝑉𝑎𝑅𝛾(𝑋)] =
1

1 − 𝛾
 ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥.

∞

𝑉𝑎𝑅𝛾(𝑋)

 

The CTE is a popular actuarial risk measure and a useful tool in financial risk assessment. Since 

the distribution function 𝐹𝑋 is unknown, statistical methods are required to make inference about 

the 𝐶𝑇𝐸𝛾 based on the observed claim size data 𝑋1, … , 𝑋𝑛 (Bolance et al. (2008)). Considering 

parametric forms for the claim size distribution 𝐹𝑋 provides parametric estimates for 𝑉𝑎𝑅𝛾(𝑋) 

and 𝐶𝑇𝐸𝛾(𝑋). 

3. Some Skew Distributions 

Skewed distributions have played an important role in the statistical literature since the 

pioneering work of Azzalini (1985). He has provided a methodology to introduce skewness in a 

normal distribution. Since then a number of papers appeared in this area. He showed that if 

𝑓(. ) is a symmetric density function defined on 𝑅 and 𝐹(. ) is its distribution function, then for 

any 𝛼 ∈ 𝑅,  

𝑔𝛼(𝑥) = 2𝑓(𝑥)𝐹(𝛼𝑥),   𝑥 ∈ 𝑅, 

defines a proper density function on 𝑅. If 𝛼 = 0, 𝑔0(𝑥) = 𝑓(𝑥) is symmetric but for 𝛼 ≠ 0, 

𝑔𝛼(. ) is skewed. If  𝛼 → ±∞, then  𝑔𝛼(. ) tends to the density function of ±|𝑋|, where 𝑋~ 𝑓(. ). 
This property has been studied extensively in the literature in connection with skew-𝑡 and skew-

Cauchy distributions (Gupta and Kundu (2010)). In this section we review some skew 

distributions which are appropriate for the claim size data. 

 

3.1. Skew-normal Distribution 

 

The random variable 𝑋 has a skew-normal (SN) distribution with location parameter 𝜇 ∈ 𝑅, scale 

parameter 𝜎 > 0 and shape parameter 𝛼 ∈ 𝑅 if its density function is given by  

 

𝑓𝑆𝑁(𝑥; 𝜇, 𝜎, 𝛼) =
2

𝜎
𝜙 (
𝑥 − 𝜇

𝜎
)Φ(𝛼

𝑥 − 𝜇

𝜎
) ,        𝑥 ∈ 𝑅, 

 

where Φ(. ) and 𝜙(. ) are the standard normal cumulative distribution function and the standard 

normal probability density function, respectively (Azzalini (1985)). We denote this by 

𝑋~𝑆𝑁(𝜇, 𝜎2, 𝛼). If 𝑋~𝑆𝑁(𝜇, 𝜎2, 𝛼), then 

 

𝐸[𝑋] = 𝜇 + 𝜎√
2

𝜋
 δ and 𝑉𝑎𝑟(𝑋) = 𝜎2(1 −

2

𝜋
𝛿2), 

 

where 𝛿 =
𝛼

√1+𝛼2
. In addition, the coefficients of skewness and kurtosis of 𝑋 are  
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𝑆(𝑋) =
4−𝜋

2

𝑠𝑖𝑔𝑛(𝛼)𝛼3

[
𝜋

2
+(

𝜋

2
−1)𝛼2]

3/2 ,     𝐾(𝑋) =
2(𝜋−3)𝛼4

[
𝜋

2
+(

𝜋

2
−1)𝛼2]

2, 

 

and thus 𝑆(𝑋) varies in (−0.9953, 0.9953) and 0 ≤ 𝐾(𝑋) ≤ 0.8692 . The ranges of skewness 

and kurtosis show that the SN distribution is not appropriate for highly skewed data with extreme 

tail values. Further properties of the 𝑆𝑁(𝜇, 𝜎2, 𝛼) distribution are given in Azzalini (1985).  

 

3.2. Skew-logistic and Generalized Logistic Distribution 

 

Using the same basic principle of Azzalini (1985), the skewness can be easily introduced to the 

logistic distribution. The density function of a skew-logistic (SL) distribution with location 

parameter 𝜇 ∈ 𝑅, scale parameter 𝜎 > 0 and shape parameter 𝛼 ∈ 𝑅, denoted 𝑆𝐿(𝜇, 𝜎, 𝛼), is 

(Nadarajah (2009))  

𝑓𝑆𝐿(𝑥; 𝜇, 𝜎, 𝛼) =
2𝑒−

𝑥−𝜇
𝜎

𝛽 (1 + 𝑒−
𝑥−𝜇
𝜎 )

2

(1 + 𝑒−𝛼
𝑥−𝜇
𝜎 )

,        𝑥 ∈ 𝑅. 

 

Skew logistic distribution has some of the properties of the skew normal distribution. As such 

𝑓𝑆𝑁(. ), 𝑓𝑆𝐿(. ) can have positive (𝛼 > 0) or negative (𝛼 < 0) skewness. However, the 𝑆𝐿(𝜇, 𝜎, 𝛼) 
distribution is a more heavy tailed skewed distributions than the 𝑆𝑁(𝜇, 𝜎, 𝛼) distribution. Also, 

for large values of 𝛼, the tail behaviors of the different members of the 𝑆𝐿(𝜇, 𝜎, 𝛼) family are 

very similar. 

 

Although 𝑓𝑆𝐿(. ) is unimodal and log-concave, the distribution function, failure rate function, and 

different moments of 𝑆𝐿(𝜇, 𝜎, 𝛼) do not have in explicit forms. Moreover, even when the 

location and scale parameters are known, the maximum likelihood estimator of the skewness 

parameter may not always exist (Gupta and Kundu (2010)). Thus, the SL distribution is difficult 

to use for data analysis purposes. As suggested by Gupta and Kundu (2010), instead of the SL 

distribution the type-I generalized logistic (GL) distribution, also known as proportional reversed 

hazard logistic (PRHL) distribution, can be employed for data analysis. 

 

The generalized logistic distribution with location parameter 𝜇 ∈ 𝑅, scale parameter 𝜎 > 0 and 

shape parameter 𝛼 > 0, denoted by 𝐺𝐿(𝜇, 𝜎, 𝛼), has the density function  

 

𝑓𝐺𝐿(𝑥) =
𝛼 exp (−

𝑥 − 𝜇
𝜎 )

𝜎 [ 1 + exp (−
𝑥 − 𝜇
𝜎 )]

𝛼+1 ,           𝑥 ∈ 𝑅. 

The 𝐺𝐿(𝜇, 𝜎, 𝛼) distribution is positively skewed for 𝛼 > 1 and negatively skewed for 0 < 𝛼 <

1. If 𝑋 ∼ 𝐺𝐿(𝜇, 𝜎, 𝛼), then 𝐸[𝑋] = 𝜇 + 𝜎[𝜓(𝛼) − 𝜓(1)] and 𝑉𝑎𝑟(𝑋) = 𝜎2[𝜓′(𝛼) + 𝜓′(1)], 

where 𝜓(𝑦) =
𝑑

𝑑𝑦
log(Γ(𝑦)) and 𝜓′(𝑦) =

𝑑

𝑑𝑦
𝜓(𝑦) are known as digamma and polygamma 

functions, respectively (Gupta and Kundu (2010)). The skewness and kurtosis of X  are  
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𝑆(𝑋) =
𝜓′′(𝛼) − 𝜓′′(1)

(𝜓′(𝛼) + 𝜓′(1)) 
3
2

,          𝐾(𝑋) =
𝜓′′′(𝛼) − 𝜓′′′(1)

(𝜓′(𝛼) + 𝜓′(1)) 2
. 

Here, 𝑆(𝑋) varies in (−2.0, 1.1396) and −2.4 ≤ 𝐾(𝑋) ≤ 6. 

3.3. Skew-Laplace Distribution 

The density function of the skew-Laplace (SLap) or skew-double exponential distribution is 

given by  

𝑓𝑆𝐿𝑎𝑝(𝑥) =

{
 

 
1

𝛼 + 𝛽
exp{

𝑥 − 𝜇

𝛼
} , 𝑥 ≤ 𝜇,

1

𝛼 + 𝛽
exp {

𝑥 − 𝜇

𝛽
} , 𝑥 > 𝜇,

 

where 𝜇 ∈ 𝑅  is the location parameter and the mode of the distribution and 𝛼 > 0 and 𝛽 > 0 are 

mixture parameters (Fieller et al. (1992)). If 𝛼 → 0 or 𝛽 → 0, then the two-parameter exponential 

or negative-exponential distribution is obtained. The case 𝛼 = 𝛽 corresponds to the classical 

symmetric Laplace distribution. If 𝑋 ∼ 𝑆𝐿𝑎𝑝(𝜇, 𝛼, 𝛽), then 𝐸[𝑋] = 𝜇 + 𝛽 − 𝛼 and 𝑉𝑎𝑟(𝑋) =

𝛼2 + 𝛽2. Also, the skewness and kurtosis of  𝑋 are  

𝑆(𝑋) =
2(𝛽3 − 𝛼3)

(𝛼2 + 𝛽2)
3
2

,            𝐾(𝑋) =  3 +
6(𝛽4 + 𝛼4)

(𝛼2 + 𝛽2)2
, 

where 𝑆(𝑋) varies in (−2, 2). Parameter estimation and further properties of the SLap 

distribution are discussed in Puig and Stephens (2007) and references therein. 

3.4. Generalized Hyperbolic Distribution 

The random variable 𝑋 is said to have a generalized hyperbolic (GH) or normal mean-variance 

mixture distribution if 𝑋 = 𝜇 +  𝑊 𝛾 + √𝑊𝜎𝑍 (Barndorff-Nielsen (1977)), where 𝑍 ∼ 𝑁(0,1) 

and 𝑊 is independent of 𝑍 and has a generalized inverse Gaussian (GIG) distribution, 𝑊 ∼
𝐺𝐼𝐺(𝜆, 𝜒, 𝜓), with density function  

𝑓𝑊(𝑤) = (
𝜓

𝜒
)

𝜆
2 𝑤𝜆−1

2𝐾𝜆(√𝜒𝜓)
exp {−

1

2
(
𝜒

𝑤
+ 𝜓𝑤)} ,     𝑤 > 0, 

 where 𝐾𝜆(. ) is the modified Bessel function of the third kind (see e.g. Abramowitz and Stegun 

(2012)) and 𝜒 > 0, 𝜓 ≥ 0, 𝜆 < 0 or 𝜒 > 0, 𝜓 > 0, 𝜆 = 0 or 𝜒 ≥ 0, 𝜓 > 0, 𝜆 > 0. Here, 𝜇 ∈
𝑅 is the location parameter, 𝜎 > 0 is the dispersion parameter and 𝛾 ∈ 𝑅 is the skewness 

parameter. If 𝛾 = 0, then the distribution is symmetric around 𝜇. The GH density is given by  
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𝑓𝐺𝐻(𝑥) =

(√
𝜓
𝜒)

𝜆

(𝜓 +
𝛾2

𝜎2
)

1
2
−𝜆

𝐾
𝜆−
1
2
(√[𝜒 + (

𝑥 − 𝜇
𝜎 )

2

] (𝜓 +
𝛾2

𝜎2
))

√2𝜋𝜎2𝐾𝜆(√𝜓𝜒) (√[𝜓2 + (
𝑥 − 𝜇
𝜎 )

2

] (𝜓 +
𝛾2

𝜎2
))

1
2
−𝜆

exp (
(𝑥 − 𝜇)𝛾

𝜎2
). 

 

Many distributions are a special or limiting cases of the GH distribuion. For  𝜆 = 1, the 

distribution is called hyperbolic distribution and for 𝜆 = −
1

2
  yields normal inverse Gaussian 

(NIG) distribution. In the case of 𝜒 = 0 and 𝜆 > 0, the distribution is known as Variance 

Gamma (VG) distribution and in the case 𝜓 = 0 and 𝜆 < 0, is called the generalized hyperbolic 

Student-t distribution. 

 

There is a known identification issue with the parameters (𝜆, 𝜒, 𝜓, 𝜇, 𝜎2, 𝛾): for any 𝜈 > 0, the 

distribution 𝐺𝐻(𝜆, 𝜒, 𝜓, 𝜇, 𝜎2, 𝛾) is identical with 𝐺𝐻(𝜆,
𝜒

𝜈
, 𝜈𝜓, 𝜇, 𝜈𝜎2, 𝜈𝛾). This problem can be 

solved by introducing the constraint  

𝐸[𝑊] = √
𝜒

𝜓

𝐾1+𝜆(√𝜒𝜓)

𝐾𝜆(√𝜒𝜓)
= 1. 

 Now, by setting �̅� = √𝜒𝜓 we obtain  

𝜓 = �̅�  
𝐾1+𝜆(�̅�)

𝐾𝜆(�̅�)
,        and        𝜒 = �̅�  

𝐾𝜆(�̅�)

𝐾1+𝜆(�̅�)
,  

and thus the distribution can be reparameterized as 𝐺𝐻(𝜆, �̅�, 𝜇, 𝜎2, 𝛾). Using the parametrization 

(𝜆, �̅�, 𝜇, 𝜎2, 𝛾), the distribution does not exist in the case �̅� = 0  and −1 ≤ 𝜆 ≤ 0, which 

corresponds to a generalized Student-t distribution with non-existing variance (Luethi and 

Breymann (2013)). If 𝑋 ∼ 𝐺𝐻(𝜆, �̅�, 𝜇, 𝜎2, 𝛾), then 𝐸[𝑋] = 𝜇 + 𝛾 and 𝑉𝑎𝑟(𝑋) = 𝜎2 +

𝛾2𝑉𝑎𝑟(𝑊). The skewness and kurtosis of the GH distribution are not expressible in closed 

analytical forms but they can be approximated using numerical methods. 

3.5. Marshal-Olkin Log-Logistic Distribution 

Marshall and Olkin (1997) considered a new family of distribution for a given distribution with 

cdf 𝐺(𝑥), survival function �̅�(𝑥) and pdf 𝑓(𝑥). They defined the cdf and pdf of the Marshal-

Olkin family of distributions respectively by  

𝐹(𝑥) = 1 − [
𝑟(1 − 𝐺(𝑥))

1 − (1 − 𝑟)�̅�(𝑥)
], 

𝑓(𝑥) =
𝑟𝑔(𝑥)

[1 − (1 − 𝑟)�̅�(𝑥)]2
. 

  

 If we consider the parent log-logistic distribution with positive parameters 𝛼 and 𝛽 and 

pdf and cdf given by 𝑔(𝑥) =
𝛼𝛽−𝛼𝑥𝛼−1

[(
𝑥

𝛽
)
𝛼
+1]

2 , 𝑥 ∈ 𝑅, 𝐺(𝑥) =
1

(
𝑥

𝛽
)
−𝛼
+1 

, then the pdf of the Marshal-

Olkin log-logistic (MO) distribution reduces to  
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𝑓𝑀𝑂−𝐿𝐿(𝑥) =
𝑟𝛼𝛽−𝛼𝑥𝛼−1

(𝑟 + (
𝑥
𝛽
)
𝛼

) (1 + (
𝑥
𝛽
)
𝛼

)

.  

 

3.6. Kumaraswamy Marshal-Olkin Log-Logistic Distribution   

 

Alizadeh et al. (2015) proposed a new extension of the Marshal-Olkin family for a given baseline 

distribution with cdf 𝐺(𝑥), survival function �̅�(𝑥) and pdf 𝑓(𝑥) depending on a parameter vector 

𝜉. They defined the cdf and pdf of the new kumaraswamy Marshal-Olkin family of distributions 

with the three additional shape parameters 𝑎, 𝑏 , 𝑝 > 0, respectively by  

 

𝐹(𝑥) = 1 − {1 − [
𝐺(𝑥)

1 − 𝑝�̅�(𝑥)
]}, 

𝑓(𝑥) =
𝑎𝑏(1 − 𝑝)𝑔(𝑥)𝐺(𝑥)𝑎−1

[1 − 𝑝�̅�(𝑥)]𝑎+1
{1 − [

𝐺(𝑥)

1 − 𝑝�̅�(𝑥)
]

𝑎

}

𝑏−1

. 

  If we consider the parent log-logistic distribution with positive parameters 𝛼 and 

𝛽 and pdf and cdf given by 𝑔(𝑥) =
𝛼𝛽−𝛼𝑥𝛼−1

[(
𝑥

𝛽
)
𝛼
+1]

2 , 𝑥 ∈ 𝑅, 𝐺(𝑥) =
1

(
𝑥

𝛽
)
−𝛼
+1 

, then the pdf of the 

Kumaraswamy Marshal-Olkin log-logistic (KMO) distribution reduces to  

 

𝑓𝐾𝑤𝑀𝑂−𝐿𝐿(𝑥) =

𝑎𝑏(1 − 𝑝)𝛼𝛽−𝛼𝑥𝛼−1(
(
𝑥
𝛽
)
−𝛼

+ 1

(
𝑥
𝛽
)
𝛼

+ 1
)

2

[1 − 𝑝 ((
𝑥
𝛽
)
−𝛼

− 1)]
𝑎+1 {1 − [

1

1 − 𝑝 ((
𝑥
𝛽
)
−𝛼

− 1)

]

𝑎

}

𝑏−1

. 

4. Data 

As in many countries, owners of automobiles in Iran are obliged to have minimum coverage for 

property damage and personal injury to third parties (parties other than the insured). The data in 

the present study are gathered from vehicle insurance portfolios from a state-owned major 

general insurance company in Iran, Alborz Insurance Company. The observations are from 

financial records of the amount of automobile accident claims for property damage to a third 

party over a period of one year, March 2011-March 2012. Only the dates on which claims for 

payment were submitted have been used and the effect of placing an upper limit on the amount 

reimbursed to a policyholder in the event of a claim, known as a coverage limit, is ignored. 

Figure 1 shows the claim sizes and aggregate claim sizes over the time period along with the 

histogram and log-histogram of the claim size data. The plot of claim sizes over the time shows 

the homogeneity of the claim arrival process and presence of extreme values among claim sizes. 

Histogram and log-histogram of the claim sizes indicate the long-tailed nature of the distribution 
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of claims. Figure 1 also presents descriptive statistics for the data. In addition to the number of 

observations, indicators for the first four moments (mean, standard deviation, skewness, excess 

kurtosis), and minimum and maximum, we also present the 99% quantile and the mean loss, if 

the loss is above 99%. The 99% quantile is an empirical estimate of 𝑉𝑎𝑅0.99(𝑋) and the mean 

loss exceeding the 99% quantile is an empirical estimate of the 𝐶𝑇𝐸0.99(𝑋). The histogram, log-

histogram and descriptive statistics show that the third party car property damage claims 

distribution has a high level of skewness and kurtosis and any candidate parametric model for the 

data is required to mimic these features. 

5. Results 

In this section, we fit the skew-normal (SN), skew-Laplace (SLap), generalized logistic (GL), 

generalized hyperbolic (GH), variance gamma (VG), normal inverse gamma (NIG), Marshal-

Olkin Log-Logistic (MO) and Kumaraswamy Marshal-Olkin Log-Logistic (KMO) distributions 

to the data. Parameters of all models are estimated using maximum likelihood estimation. All the 

calculations are implemented in the statistical programming language R (R Core Team (2013)), 

using packages sn (Azzalini (2014)), glogis (Zeileis and Windberger (2014)) and ghyp (Luethi 

and Breymann (2013)). 

 
 

 
Figure 1. Claim size (top left), aggregate claims (top right), histogram (bottom left) and log-Histogram (bottom 

right) of the amount of automobile accident claims for property damage to a third party. 
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The results are presented in Table 1. The log-likelihood, Akaike’s Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) of each model are also reported in Table 1. Based on 

AIC and BIC criteria, the GH and its special case, the VG model are better, respectively. The 

AIC and BIC of the GH, VG, SLap models are fairly close and since the models are not nested, 

the likelihood ratio test cannot be employed to see if these models are significantly different 

from each other. 

 To examine which model is more in agreement with the data, the Kolmogorov-Smirnov (KS) 

goodness-of-fit test statistic is computed for each model. All of these values are above the critical 

value of the KS test at 5%  level with 𝑛 = 6366, which is 0.01702, but the two smallest values 

belong to the NIG and KMO model. This indicates that the two distribution functions of the 

fitted NIG and KMO models are closer to the empirical distribution function of the data than 

other models. This can also be seen from Figure 2, where the logarithm of the density functions 

of all fitted models are compared with the log-histogram of the data. This figure shows the 

KMOL is superior to other distributions in covering the long tail of the data distribution. Perhaps 

one reason it is so is that it is a special and more flexible distribution to descibe the skew data.  In 

addition, the KS test statistic and Figure 2 reveal that the fitted SN distribution is the worst 

model among the fitted models. This is a consequence of its narrow range of skewness and 

kurtosis which is inadequate for the present data with high levels of skewness and kurtosis. 

Finally, Table 2 compares the empirical mean, standard deviation, skewness, kurtosis, VaR and 

CET (at 95% and 99% confidence levels) of the data with their parametric counterparts under the 

fitted models. From the expected value, standard deviation, skewness and kurtosis, it can be seen 

that the KMO model has the closest characteristics to their corresponding empirical values. Also, 

the fitted KMO model provides very close VaR and CET values to their corresponding empirical 

values at both 95% and 99% confidence levels. Notice that the characteristics of the fitted SN 

model are very far from their corresponding empirical values. 

 

Table 1. Estimated parameters, log-likelihood, AIC, BIC and Kolmogorov-Smirnov test statistic of the fitted skew-

normal (SN), skew-Laplace (SLap), generalized logistic (GL), generalized hyperbolic (GH), variance-

gamma (VG), normal inverse Gaussian (NIG) distributions to the amount of automobile accident claims 

for property damage to a third party. 
Model Estimates of model parameters Log-likelihood AIC BIC KS statistics 

SN �̂� = 1.0014, �̂� = 0.7931, �̂� = 183.4461 -3168.93 6343.9 6364.1 0.2443 

SLap �̂� = 1.0080, �̂� = 0.00355, �̂� = 0.5288 -2352.85 4711.7 4732.0 0.1065 

GL �̂� = −2.7137, �̂� = 0.3161, �̂� = 351023.4108 -3290.26 6586.5 6606.8 0.1488 

GH �̂� = 1.024, �̅� ̂ = 0.147, �̂� = 0.999, �̂� = 0.0198, 𝛾 = 0.535 -2342.67 4695.4 4729.1 0.1092 

VG �̂� = 1.0665, �̂� = 1.0040, �̂� = 0.0433, 𝛾 = 0.5293 -2346.33 4700.7 4727.7 0.1114 

NIG �̅� ̂ = 1.1473, �̂� = 0.9210, �̂� = 0.0118, 𝛾 = 0.6122 -2416.16 4840.3 4867.4 0.0793 

MO �̂� = 1.6576, �̂� = 6.4999, �̂� = 1.3073 -3293.25 6592.5 6612.8 0.1189 

KMO �̂� = 0.991, �̂� = 16.700, �̂� = 0.276, �̂� = 12.030, �̂� = 1.292 -2503.25 5016.5 5050.3 0.0821 
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Figure 2.  log-Histogram of the third-party car insurance claims and logarithm of density 

functions of the fitted models. 

 

6. Conclusion 

The aim of this work is to fit several distributions to 6366 third party car property damage claims 

submitted to an Iranian insurance company during one year. Because the empirical results show 

that the data are right-skewed, the skew-distributions to analyze of data perform very well. The 

results showed that the conventional skew-normal distribution is not an appropriate model for the 

data. On the other hand, the Kumaraswamy Marshal-Olkin Log-Logistic distribution has the 

ability of describing the features of the observed data better than other competing distributions. 

The value at risk and conditional tail expectation of the claims are estimated both parametrically 

and empirically. In many fitted distributions,  the Kumaraswamy Marsha-Olkin Log-Logistic 

model provided very close parametric estimates of expected value, standard deviation, skewness, 

kurtosis, VaR’s and CTE’s to the their corresponding empirical estimates. Thus, the fitted 

Kumaraswamy Marshal-olkin Log-Logistic model can be regarded as an appropriate model for 

the data which provides much more accurate estimate for the claim distribution than the skew-

normal model. 

 
Table 2. Empirical and estimated values of mean, standard deviation, skewness, kurtosis and 0.95 and 0.99 VaR and 

CTE from the fitted models to the amount of automobile accident claims for property damage to a third 

party. 

Model 𝐸[𝑋] √𝑉𝑎𝑟(𝑋) 𝑆(𝑋) 𝐾(𝑋) 𝑉𝑎𝑅0.95(𝑋) 𝐶𝐸𝑇0.95(𝑋) 𝑉𝑎𝑅0.99(𝑋) 𝐶𝐸𝑇0.99(𝑋) 

Empirical 1.5333 0.5897 3.8087 27.2280 2.6507 3.4451 3.9878 5.0221 

SN 1.6342 0.4781 0.9951 0.8690 2.5559 2.8555 3.0443 0.0329 

SLap 1.5333 0.5288 1.9999 3.9999 2.5887 3.1157 3.4398 3.9686 

GL 1.5044 0.4054 1.1395 -2.3999 2.2607 2.5808 2.7759 3.0927 

GH 1.5333 0.2687 1.9680 8.8172 2.5664 3.0802 3.3934 3.9065 

VG 1.5333 0.2646 1.9433 8.5928 2.5577 3.0627 3.3707 3.8739 

NIG 1.5332 0.3267 2.8008 16.0739 2.6382 3.3485 3.7730 4.5524 

MO 1.4606 0.4285 1.5759 10.6896 2.2105 2.6244 2.8507 3.3728 

KMO 1.5781 0.6931 3.8649 26.9143 2.7959 3.8094 4.5890 5.4794 
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