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Abstract

In this paper, the exact travelling wave solution of the Schrödinger equation with power law
nonlinearity is studied by the Sub-ODE method. It is shown that the method is one of the most
effective approaches for finding exact solutions of nonlinear differential equations.
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1. Introduction

The Schrödinger equation is one of the important partial differential equations and plays a vital
role in various areas of physical, biological, and engineering sciences. It appears in the study
of nonlinear optics, plasma physics, mathematical bioscience, quantum mechanics, and several
other disciplines. One of the considerable cases of the nonlinear Schrödinger equations is power
law nonlinearity which was studied by Wazwaz (2009).
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Recently, there has been a growing interest in finding exact analytical solutions to nonlinear wave
equations by using appropriate techniques. The investigation of exact travelling wave solutions
for nonlinear partial differential equations (NLPDEs) plays an important role in the study of
nonlinear physical phenomena. Many powerful methods to construct exact solutions of NLPDEs
have been established and developed, which lead to one of the most excited advances of nonlinear
science and theoretical physics. In fact, many kinds of exact soliton solutions have been obtained
by using, for example, the homogeneous balance method (see Wang (1995), Zayed et al. (2004)),
the hyperbolic tangent expansion method (see Yang et al. (2001), Zayed et al. (2004)), the trial
function method (see Inc and Evans (2004)), the tanh-method (see Abdou (2007), Fan (2000),
Malfliet (1992)), the non-linear transform method (see Hu (2004)), the inverse scattering transform
(see Ablowitz and Clarkson (1991)), the Backlund transform (see Miura (1978), Rogers and
Shadwick (1982)), the Hirotas bilinear method (see Hirota (1973), Hirota and Satsuma (1981)),
the generalized Riccati equation method (see Yan and Zhang (2001), Porubov (1996)), the Jacobi
elliptic functions method (see Liu et al. (2001), Yan (2003)), F-expansion method (see Wang
and Li (2005), Wang and Li (2005)), and so on. The rest of the paper is organized as follows.
In Section 2, we describe the Bernoulli Sub-ODE method to obtain travelling wave solutions of
nonlinear evolution equations, and give the main steps of the method. In the subsequent section,
we will apply the method for finding exact travelling wave solutions for the nonlinear Schrödinger
equation with power law nonlinearity. In the last section, some conclusions are presented.

2. Description of the Bernoulli Sub-ODE Method

In this section we present the solutions of the following ODE,

G′ + λG = µG2, (1)

where λ 6= 0, G = G(ξ). When µ 6= 0, equation (1) is the type of Bernoulli equation, and we
can obtain the solution as:

G =
1

µ
λ
+ deλξ

, (2)

where d is an arbitrary constant.

Suppose that a nonlinear equation, say in three independent variables x, y and t,, is given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, . . .) = 0, (3)

where u = u(x, y, t) is an unknown function, P is a polynomial in u = u(x, y, t) and its various
partial derivatives, in which the highest order derivatives and nonlinear terms are involved. By
using the solutions of equation (1), we can construct a serials of exact solutions of nonlinear
equations:

Step 1. We suppose that

u(x, y, t) = u(ξ), ξ = ξ(x, y, t), (4)

the travelling wave variable (4) permits us reducing equation (3) to an ODE for u = u(ξ)

P (u, u′, u′′, . . .) = 0. (5)
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Step 2. Suppose the solution of (5) can be expressed by a polynomial in G as follows:

u(ξ) = αmG
m + αm−1G

m−1 + · · · , (6)

where G = G(ξ) satisfies equation (3), and αm, αm−1, ... are constants to be determined later,
αm 6= 0, m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in (5).

Step 3. Substituting (6) into (5) and using (1), collecting all the terms with the same order
of G together, the left hand side of equation (5) is converted into another polynomial in G.
Equating each coefficient of this polynomial to zero yields a set of algebraic equations for
αm, αm−1, ..., λ, µ.

Step 4. Solving the algebraic equations system in step 3, and by using the solutions of equation
(1), we can construct the travelling wave solutions of the nonlinear evolution equations (5).

3. Application of the Bernoulli Sub-ODE Method For Schrödinger equation with power
law nonlinearity

In this section, we will consider the following NLS equation with power law nonlinearity

iwt + wxx + a|w|2n+1w = 0, (7)

where a is a real parameter and w = w(x, t) is a complex-valued function of two real variable
x, t. We use the transformation

w(x, t) = φ(ξ)exp[i(αx+ βt)], ξ = k(x− 2αt), (8)

where k, α and β are constants, all of them are to be determined.

Substitution (8) into (7), we obtain ordinary differential equation:

−(β + α2)φ+ k2φξξ + aφ2n+1 = 0. (9)

Due to the difficulty in obtaining the Sub-ODE of equation (9), we suppose a transformation
denoted by u = v

1
n . Therefore, equation (9) is converted to

nv′′v + (1− n)(v′)2 − n2Av2 + n2Bv4 = 0, (10)

where A = β+α2

k2
, B = a

k2
.

Suppose that the solution of (10) can be expressed by a polynomial in G as follows:

v(ξ) =
L∑
i=0

biG
i, (11)

where bi are constants and G = G(ξ) satisfies equation (1).

Balancing the order of v4 with the order of (v′)2 in equation (11), we find L = 1. So the solution
takes on the form

v(ξ) = b1G+ b0, b1 6= 0, (12)
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where b0 and b1 are constants to be determined later.

Substituting (12) into the ODE (10) and collecting all the terms with the same power of G
together and equating each coefficient to zero, yields a set of the simultaneous algebraic equations
as follows:

G4 : 2nb21µ
2 + b21µ

2 − nb21µ2 + n2Bb41 = 0,

G3 : −3b21nµλ+ 2b0b1nµ
2 − 2b21µλ+ 2b21nµλ+ 4n2Bb0b

3
1 = 0,

G2 : nb21λ
2 − 3nb0b1µλ+ b21λ

2 − nb21λ2 − n2Ab21 + 6b20b
2
1n

2B = 0,

G1 : nb0b1λ
2 − 2n2Ab0b1 + 4b30b1n

2B = 0,

G0 : −n2Ab20 + n2Bb40 = 0.

Solving the algebraic equations above, yields:

Case 1

b0 =

√
β + α2

α
, b1 =

√
n+ 1

β

µ

n
, β = b20α− α2. (13)

Substituting (13) into (12), we have

v1(ξ) =

√
n+ 1

β

µ

n
G+

√
β + α2

α
, ξ = k(x− 2αt). (14)

Combining with equation (2) and considering φ = v
1
n , we can obtain the travelling wave solutions

of NLS equation with power law nonlinearity as follows:

φ1(ξ) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
+

√
β + α2

α

) 1
n

, ξ = k(x− 2αt), (15)

where d is an arbitrary constant.

Substituting (15) into (8), we have

w1(ξ) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
+

√
β + α2

α

) 1
n

exp[i(αx+ βt)], ξ = k(x− 2αt).

Then we have

w1(x, t) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλk(x−2αt)

)
+

√
β + α2

α

) 1
n

exp[i(αx+ (b20α− α2)t)].

Case 2

b0 = −
√
β + α2

α
, b1 =

√
n+ 1

β

µ

n
, β = b20α− α2. (16)

Substituting (16) into (12), we have

v2(ξ) =

√
n+ 1

β

µ

n
G−

√
β + α2

α
, ξ = k(x− 2αt). (17)
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Combining with equation (2) and considering φ = v
1
n , we can obtain the travelling wave solutions

of NLS equation with power law nonlinearity as follows:

φ2(ξ) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
−
√
β + α2

α

) 1
n

, ξ = k(x− 2αt), (18)

where d is an arbitrary constant.

Substituting (18) into (8), we have

w2(ξ) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
−
√
β + α2

α

) 1
n

exp[i(αx+ βt)], ξ = k(x− 2αt).

Then we have

w2(x, t) =

(√
n+ 1

β

µ

n

( 1
µ
λ
+ deλk(x−2αt)

)
−
√
β + α2

α

) 1
n

exp[i(αx+ (b20α− α2)t)].

Case 3

b0 =

√
β + α2

α
, b1 = −

√
n+ 1

β

µ

n
, β = b20α− α2. (19)

Substituting (19) into (12), we have

v3(ξ) = −
√
n+ 1

β

µ

n
G+

√
β + α2

α
, ξ = k(x− 2αt). (20)

Combining with equation (2) and considering φ = v
1
n , we can obtain the travelling wave solutions

of NLS equation with power law nonlinearity as follows:

φ3(ξ) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
+

√
β + α2

α

) 1
n

, ξ = k(x− 2αt), (21)

where d is an arbitrary constant.

Substituting (21) into (8), we have

w3(ξ) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
+

√
β + α2

α

) 1
n

exp[i(αx+ βt)], ξ = k(x− 2αt).

Then we have

w3(x, t) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλk(x−2αt)

)
+

√
β + α2

α

) 1
n

exp[i(αx+ (b20α− α2)t)].

Case 4

b0 = −
√
β + α2

α
, b1 = −

√
n+ 1

β

µ

n
, β = b20α− α2. (22)

Substituting (22) into (20), we have

v4(ξ) = −
√
n+ 1

β

µ

n
G−

√
β + α2

α
, ξ = k(x− 2αt). (23)
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Combining with equation (2) and considering φ = v
1
n , we can obtain the travelling wave solutions

of NLS equation with power law nonlinearity as follows:

φ4(ξ) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
−
√
β + α2

α

) 1
n

, ξ = k(x− 2αt), (24)

where d is an arbitrary constant.

Substituting (24) into (8), we have

w4(ξ) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλξ

)
−
√
β + α2

α

) 1
n

exp[i(αx+ βt)], ξ = k(x− 2αt).

Then we have

w4(x, t) =

(
−
√
n+ 1

β

µ

n

( 1
µ
λ
+ deλk(x−2αt)

)
−
√
β + α2

α

) 1
n

exp[i(αx+ (b20α− α2)t)].

4. Conclusion

In this paper, we have seen that some new traveling wave solutions of NLS equation with power
law nonlinearity are successfully found by using the Bernoulli sub-ODE method. This method is
concise and effective and can be fulfilled by the aid of the mathematical software Maple. Also
this method can be applied to many other nonlinear problems.
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