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Abstract

Hydromagnetic free and forced convection in a parallel plate channel bounded by porous bed
and transverse magnetic field has been considered. When there is a uniform axial temperature
variation along the walls, the primary flow shows incipient flow reversal at the upper plate for
an increase in temperature along that plate. Similarly flow reversal at the lower plate occurs with
a decrease in temperature along that plate. The magnetic field, arising as a body couple in the
governing equations is shown to increase the axis dispersion coefficient. The effect of various
physical parameters such as Hartmann number, Grashof number, porous parameter and couple
stress parameter on the velocity, temperature and dispersion coefficient, mean concentration, skin
friction coefficient and Nusselt numbers are computed and analyzed through graphs.

Keywords: Hartmann number; Heat and mass transfer; Magnetohydrodynamic; couple
stress fluid; generalized dispersion model
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1. Introduction

The external regulation of dispersion in plane parallel flow is very important from the point of
view of its applications in biomechanical, chemical engineering and in many industrial problems.
One way of regulating dispersion is by means of influencing the flow by appropriate thermal
means at the boundaries. Miscible dispersion of passive solute also depends on the fluid solvent.

Many applications involve solvents with micron sized suspended particles and these results in
change of solvent viscosity. The particles also have relative spin with respect to the solvent.
Stoke’s couple stress fluid is one such fluid, which models suspensions. The unsteady convective
diffusions of passive solute in this fluid has been analyzed by Rudraiah et al. (1986). The bounding
walls and their problem are assumed to be permeable.

Lighthill (1966) obtained the exact solution of the unsteady convection diffusion equation, which
is asymptotically valid for small time. Chatwin (1971) also studied the theory for large time by the
Laplace transform technique. Barton (1986) has resolved certain technical difficulties in the Aris
(1956) method of moments and obtained the solutions of the second and third moments equations
of the distribution of the solute, valid for all time. However, Sankarasubramanian and Gill (1973)
have developed an analytical method to analyze the transient dispersion of a non-uniform initial
distribution, called generalized dispersion in a channel.

The effect of buoyancy forces caused by a density difference due to concentration difference
of a solvent in a straight horizontal pipe studied by Erdogan and Chatwin (1967). Barton and
Stokes (1986) computed shear dispersion in parallel flow numerically. Mazumder (1979) studied
the dispersion of solute in the combined free and forced convective laminar flow between two
parallel plates in presence of uniform axial temperature variation along the channel walls, for
asymptotically large time and found that effective Taylor diffusion coefficient increases with the
Grashof number. Bestman (1983) studied the unsteady low Reynolds number flow in a heated
tube of slowly varying section. In that analysis the effect of forced and free convection heat
transfer on flow in an axisymmetric tube whose radius varied slowly in the axial direction was
addressed.

Siddheshwar and Thangaraj (2005) investigated the dispersion of solute in a fully developed
flow of a Boussinesq Stokes suspension through a parallel channel with axial variation of
temperature along the bounding walls. Sivasankaran (2007) examined the effect of variable
thermal conductivity on buoyant convection in a cavity with internal heat generation. Kafoussias
et al. (2008) described the two dimensional steady and laminar free-forced convective boundary
layer flow of a biomagnetic fluid over a semi infinite vertical hot plate under the action of a
localized magnetic field.

Tzirtzilakis et al. (2010) studied the forced and free convective boundary layer flow of a magnetic
fluid over a flat plate under the action of a localized magnetic field. Sibanda and Makinde (2010)
investigated the MHD flow and heat transfer past a rotating disk in a porous medium with ohmic



542 N.P. Ratchagar & R. Vijayakumar

heating and viscous dissipation. Rashidi et al. (2012) applied MHD flow in medicine science.
They studied the dual control mechanisms of transverse magnetic field and porous media filtration
in a buoyancy-driven blood flow regime in a vertical pipe, as a model of a blood separation
configuration.

Makinde et al. (2013) described the buoyancy effects on MHD stagnation point flow and heat
transfer of a nanofluid past a convectively heated stretching/ shrinking sheet. Bhuvaneswari and
Sivasankaran (2014) investigated the free convection flow in an inclined plate with variable
thermal conductivity by scaling group transformations. Rundora and Makinde (2015) investigate
the combined effects of suction/injection and Navier slip at the channel walls on the heat transfer
characteristics in such flows. Chinyoka and Makinde (2015) studied the unsteady flow of a reactive
variable viscosity third-grade fluid between two parallel porous plates filled with a porous medium
and acted upon by both nonconstant pressure and buoyancy effects. Both the left-hand side and
right-hand side walls of the channel are subjected to asymmetric convective heat exchange with
the ambient and allow for uniform suction/injection in the transverse direction.

The objective of the present chapter is to study the dispersion of a solute in combined free
and forced convective laminar flow through a horizontal channel bounded by porous beds with
uniform axial temperature variation along the walls, using generalized dispersion of a solute (Gill
and Sankarasubramanian (1970)).

2. Mathematical Formulation

For a steady fully developed laminar flow, the velocity u in the x direction is a function of y
only. Consider the combined free and forced convective laminar flow of a viscous incompressible
fluid bounded by porous layers, separated by a distance 2h apart, in the presence of a uniform
linear axial temperature variation along the channel.

y

x

y = h

y = - h

y=0
Region 1

B0

B0

-Xs/2 Xs/2
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g

Figure 1. Physical Configuration

The equations governing the flow of a couple stress fluid are given by Srinivasacharya et al.
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(2011).

Region 1: Fluid Film

Conservation of mass for an incompressible flow

∇ · ~V = 0, (1)

Conservation of momentum

ρ
D~V

Dt
= −∇p+ µ∇2~V − λ∇4~V + J ×B + ρg, (2)

Conservation of energy

ρCp
D~T

Dt
= KT∇2 ~T + µ[(∇~V ) : (∇~V )T + (∇~V ) : (∇~V )]

+4λ[(∇~ω) : (∇~ω)T ] + 4λ′[(∇~ω) : (∇~ω)T ] +
J.J

σ0

, (3)

Conservation of species
D~C

Dt
= D∇2 ~C. (4)

Region 2: Porous Tissue

Conservation of mass for an incompressible flow

∇ · ~Vp = 0, (5)

Conservation of momentum

ρ
D ~Vp
Dt

= −∇p+ µ∇2 ~Vp −
µ

k
(1 + β) ~Vp + ρg, (6)

where D
Dt

= ∂
∂t

+ ~V .∇ is the material derivative, ~V = (u∗, v∗, 0) is the velocity vector, ρ the
blood density, µ is the dynamic viscosity of the blood, ~T is the temperature of the blood, λ
and λ′ are the couple stress parameter, Cp is the specific heat at the constant pressure, KT is
the thermal conductivity, ~ω is the rotation vector, ~C is the concentration, D is the molecular
diffusivity, k is the permeability parameter of porous medium and g is gravity.

In deriving the governing equation and the corresponding boundary conditions the following
assumptions are made.

• Blood is treated as a couple stress fluid (non-Newtonian).
• Flow region may be classified into two sub-regions fluid film and porous tissue(Figure 1).
• The biomagnetic fluid flow is laminar, steady, unidirectional and incompressible.
• The induced magnetic field and the electric field produced by the motion of blood are

negligible (since blood has low magnetic Reynolds number)
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• A uniform magnetic field B0 is applied in the y−direction to the flow of blood.
• The effect of viscous dissipation and Joule heating are considered in the energy equation.
• The Boussinesq approximation is applied.
• Concentration C is introduced as a slug which is a function of time (t) and coordinates x

and y.

Under the above stated assumptions, equations (1) and (6) reduces to

Region 1: Fluid Film

∂u

∂x
= 0,

0 = −∂p
∗

∂x
+ µ

∂2u

∂y2
− λ∂

4u

∂y4
−B2

0σ0u, (7)

0 = −∂p
∗

∂y
− ρg, (8)

and energy equation (3) becomes

0 = KT
∂2T ∗

∂y2
+ µ

(
∂u

∂y

)2

+ λ

(
∂2u

∂y2

)2

+ σ0B
2
0u

2. (9)

The concentration C satisfying the convective diffusion equation (4) gives

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
. (10)

Region 2: Porous Tissue

∂up
∂x

= 0,

0 = −∂p
∗

∂x
− µ(1 + β1)

k
up, (11)

0 = −∂p
∗

∂y
− ρg, (12)

The boundary conditions on the velocity and temperature are,

∂u

∂y
=
−α√
k

(u− up), T ∗ = T1 at y = h, (13)

∂u

∂y
=

α√
k

(u− up), T ∗ = T0 at y = −h, (14)

The couple stress conditions,

∂2u

∂y2
= 0 at y = ±h, (15)
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The initial and boundary conditions on concentration

C =


C0, |x| ≤

xs
2
,

0, |x| > xs
2
,

at t = 0, (16)

∂C

∂y
= 0 at y = ±h, (17)

C =
∂C

∂x
= 0 at x =∞, (18)

where u represents the axial velocity of the blood, p∗ is the pressure, B0 the magnetic field, σ0 is
the electric conductivity of the blood, KT is the the thermal conductivity, T ∗ is the temperature
of blood, T0 and T1 are the temperatures at the lower and upper wall of blood. Equation (11)
is the modified Darcy equation, modified in the sense of incompressible couple stress parameter,
up is the Darcy velocity, α is the slip parameter and C0 is the initial concentration of the initial
slug input of length xs.

Equations (13) and (14) are Beavers and Joseph (1967) slip condition at the lower and upper
permeable surfaces. Equation (15) specifies the vanishing of couple stress at the boundaries. The
term σ0B

2
0u in (7) represents the Lorentz force per unit volume and arises due to the electrical

conductivity of the fluid, whereas the term σ0B
2
0u

2 in (9) represents the Joule heating. These
two terms arise due to the MHD (Cramer and Pai (1973) and Hughes and Young (1996)).

Assuming the uniform axial temperature variation along the walls, the temperature of the blood
can be written as

T ∗ − T0 = N ′x+ φ(y), (19)

where N ′ is a constant temperature gradient in the x−direction, φ(y) is certain function of
temperature.

The equation of state under the Boussinesq approximation (Sekar and Raju (2013)) is assumed
to be

ρ = ρ0 (1− β′(T ∗ − T0)) , (20)

where ρ0 is the density of a reference state and β′ is the coefficient of volume expansion.

Substituting equations (19) and (20) in (8) and integrating with respect to y, we get

p∗ = −ρ0gy + ρ0gβ
′Nxy − ρ0gβ

′
∫
φ(y)dy + ψ1,

where ψ1 = ψ1(x) is a y− integration constant.

Differentiating with respect to x we get

∂p∗

∂x
= ρ0gβ

′Ny +
∂ψ1

∂x
. (21)
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Substituting (21) in (7), we obtain

0 = −ρ0gβ
′Ny − dψ1

dx
+ µ

∂2u

∂y2
− λ∂

4u

∂y4
− σ0B

2
0u. (22)

Introducing the non-dimensional variables

U =
uh

νPx
, Up =

uph

νPx
, η =

y

h
, Px =

−h3

ρ0ν2

dψ1

dx
, T =

T ∗ − T0

T1 − T0

.

Equations (9) and (22) in non-dimensional form are

Region 1: Fluid Film

∂4U

∂η4
− a2∂

2U

∂η2
+ a2M2U = a2(1−Gη), (23)

and
a2

EcPr

∂2T

∂η2
+ a2

(
∂U

∂η

)2

+
∂2U

∂η2

2

+ a2M2U2 = 0. (24)

Region 2: Porous Tissue

Integrating (12) with respect to y, then, substituting in (11) and using non-dimensional variables,
we get

Up =
1

σ2(1 + β1)
, (25)

The boundary conditions of equations (13) to (15) in non-dimensional form are

∂U

∂η
= −ασ(U − Up), T = 1 at η = 1, (26)

∂U

∂η
= ασ(U − Up), T = 0 at η = −1, (27)

∂2U

∂η2
= 0 at η = ±1, (28)

where a =
h

l
is the couple stress parameter, l =

√
λ
µ

is the material constant characterizing

the couple stress property of the fluid, M2 =
B2

0σ0h
2

µ
is the square of the Hartmann number,

G =
β′gNh4

ν2Px
is the Grashof number, Ec =

v2
0P

2
x

h2Cp(T1 − T0)
is the Eckert number, Pr =

µCp
KT

is the Prandtl number, σ =
h√
k

is the porous parameter, ν is the kinematic viscosity,

Re =
ρ(νPx

h
)h

λ
is the Reynolds number, Px is the positive values of G correspond to heating

along the channel walls.
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3. Method of Solution

Velocity and Temperature Distribution

Region 1: Fluid Film

Equation (22) is a fourth order differential equation with constant coefficient, we get the com-
plementary function(CF) as

CF = C1e
m1η + C2e

−m1η + C3e
m3η + C4e

−m3η,

and the particular integral(PI) as

PI =
1−Gη
M2

,

We obtain U(η) as the sum of CF and PI, applying the boundary conditions (13) to (15), the
velocity of blood are obtained as

U(η) = C1e
m1η + C2e

−m1η + C3e
m3η + C4e

−m3η +
1−Gη
M2

. (29)

Applying the boundary conditions (13) and (14) using equation (9), the temperature of blood is
obtained as

T = C6η + C5 + I4I5e
2ηm1 + I4I6e

2ηm3

− I4I7

(
C2C3e

η(m3−m1) + C1C4e
η(m1−m3)

)
+ I4I9e

−2ηm1 − I4I8

(
C1C3e

η(m1+m3) + C2C4e
η(−(m1+m3))

)
+ I4

(
−a2η4G2M2 + 4a2η3GM2 − I11η

2 + I4I10e
−2ηm3

)
+ I12I4

(
C1e

ηm1
(
GM2 (ηm1 − 2) +Gm2

1 −m1M
2
))

+ I4C2e
η(−m1)

(
GM2 (ηm1 + 2)−Gm2

1 −m1M
2
)

+ I13I4

(
C3e

ηm3
(
GM2 (ηm3 − 2) +Gm2

3 −m3M
2
))

+ I4C4e
η(−m3)

(
G
(
GM2 (ηm3 + 2)−m2

3

)
−m3M

2
)
, (30)

where C1, C2, C3, C4, C5, C6, I4, I5, I6, I7, I8, I9 and I10 are constants given in the Appendix.

The normalized axial components of velocity obtained from (29) is

U ′ =
U

Ū
,

where Ū =
1

2

1∫
−1

U(η)dη =
(C1 + C2) sinhm1

m1

+
(C3 + C4) sinhm3

m3

+
2

M2
.

Generalized dispersion model
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Introducing the non-dimensional quantities

θ =
C

C0

; ξ′ =
Dx

h2Ū
; ξs =

Dxs
h2ū

; η =
y

h
; τ =

Dt

h2
; U =

u

ū
; Pe =

hŪ

D
.

equation (10) becomes
∂θ

∂τ
+ U

∂θ

∂ξ′
=

1

Pe2

(
∂2θ

∂ξ′2
+
∂2θ

∂η2

)
, (31)

We define the axial coordinate moving with the average velocity of flow as x1 = x− τŪ which
is in dimensionless form ξ = ξ′ − τ , where ξ =

x1

hPe
. Then, equation (31) becomes

∂θ

∂τ
+ U ′

∂θ

∂ξ
=

1

Pe2

(
∂2θ

∂ξ2
+
∂2θ

∂η2

)
, (32)

where Pe =
Ūh

D
is the Peclet number and U ′ =

U

Ū
(non-dimensional velocity in a moving

coordinate system).

The initial and boundary conditions (16) to (18) in dimensionless form are

θ =


1, |ξ| ≤ ξs

2
,

0, |ξ| > ξs
2
,

at τ = 0, (33)

∂θ

∂η
= 0 at η = ±1, (34)

θ =
∂θ

∂ξ
= 0 at ξ =∞. (35)

The solution of equation (32) is obtained using generalized dispersion model of Gill and Sankara-
subramanian (1970) is

θ(τ, ξ, η) = θm(τ, ξ) + f1(τ, η)
∂θm
∂ξ

+ f2(τ, η)
∂2θm
∂ξ2

+ ...,

that is,

θ(τ, ξ, η) = θm(τ, ξ) +
∞∑
k=1

fk(τ, η)
∂kθm
∂ξk

, (36)

where θm is the dimensionless cross sectional average concentration, given by

θm(τ, ξ) =
1

2

1∫
−1

θ(τ, ξ, η)dη. (37)

Integrating equation (32) with respect to η in [−1, 1] and using the equation (37), we get

∂θm
∂τ

=
1

Pe2

∂2θm
∂ξ2

+
1

2

1∫
−1

∂2θ

∂η2
dη − 1

2

∂

∂ξ

1∫
−1

U ′ θ dη, (38)
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Substituting equation (36) in (38), we obtain

∂θm
∂τ

=
1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U ′
(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + . . .

)
dη. (39)

It is assumed that the process of distributing θm is diffusive in nature from the time ero then,
following Gill and Sankarasubramanian (1970), the generalized dispersion model for θm can be
written as

∂θm
∂τ

=
∞∑
i=1

Ki(τ)
∂iθm
∂ξi

. (40)

Substituting the equation (40) in (39) we obtain

K1
∂θm
∂ξ

+K2
∂2θm
∂ξ2

+K3
∂3θm
∂ξ3

+ . . . =
1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U ′(θm(τ, ξ)

+ f1(τ, η)
∂θm
∂ξ

+ f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .)dη,

(41)

Equating the coefficients of
∂θm
∂ξ

,
∂2θm
∂ξ2

, . . . we get,

Ki(τ) =
δij
P 2
e

− 1

2

1∫
−1

U ′fi−1(τ, η)dη, i = 1, 2, 3, . . . and j = 2. (42)

where δij is the Kroneckar delta defined by

δij =

{
1, if i = j,

0, if i 6= j.

Substituting equation (36) in (32), we get

∂

∂τ

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .

)

+U ′
∂

∂ξ

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .

)
=

1

P 2
e

∂2

∂ξ2

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η) + . . .

)
+
∂2

∂η2

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

+ . . .

)
. (43)

Substituting equation (40) in (43), using

∂k+1θm
∂τ∂ξk

=
∞∑
i=1

Ki(τ)
∂k+iθm
∂ξk+i

,
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we obtain[
∂f1
∂τ
− ∂2f1

∂η2
+ U ′ +K1(τ)

]
∂θm
∂ξ

+

[
∂f2
∂τ
− ∂2f2

∂η2
+ U ′f1 +K1(τ)f1 +K2(τ)−

1

P 2
e

]
∂2θm
∂ξ2

+

∞∑
k=1

[
∂fk+2

∂τ
− ∂2fk+2

∂η2
+ U ′fk+1 +K1(τ)fk+1 +

(
K2(τ)−

1

P 2
e

)
fk

+

k+2∑
i=3

Kifk+2−i

]
∂k+2θm
∂ξk+2

= 0,

(44)

with f0 = 1. Equating the coefficients of
∂kθm
∂ξk

(k = 1, 2, 3, . . .) in equation (44) to zero, we

obtain the following set of partial differential equations.

∂f1

∂τ
=

∂2f1

∂η2
− U ′ −K1(τ), (45)

∂f2

∂τ
=

∂2f2

∂η2
− U ′f1 −K1(τ)f1 −K2(τ) +

1

P 2
e

, (46)

∂fk+2

∂τ
=

∂2fk+2

∂η2
− U ′fk+1 −K1(τ)fK+1 −

(
K2(τ)− 1

P 2
e

)
fk −

k+2∑
i=3

Kifk+2−i.

(47)

Since θm is chosen in such a way to satisfy the initial and boundary conditions on θ, (33) and
(34) on fk function becomes

fk(0, η) = 0, (48)
∂fk
∂η

(τ,−1) = 0, (49)

∂fk
∂η

(τ, 1) = 0, (50)

for k = 1, 2, 3, . . .

Also, from equation (35) we have

1∫
−1

fk(τ, η)dη = 0, (51)

for k = 1, 2, 3, . . .

To find Ki’s we know the fk’s and its corresponding initial and boundary conditions. From
equation (42) for i = 1, using f0 = 1, we get K1 as

K1(τ) = 0. (52)
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From equation (42) for i = 2, we get K2 as

K2(τ) =
1

P 2
e

− 1

2

1∫
−1

U ′f1dη. (53)

To evaluate K2(τ),

put f1 = f10(η) + f11(τ, η), (54)

where f10(η) corresponds to an infinitely wide slug which is independent of τ and f11 is τ−
dependent satisfying

df10

dη
= 0 at η = ±1, (55)

1∫
−1

f10dη = 0. (56)

Using the (54) in (45) gives

d2f10

dη2
− U ′ = 0, (57)

∂f11

∂τ
=

∂2f11

∂η2
. (58)

Solving the equation (57) with conditions (55) and (56) we get

f10 =
1
−
u

(
C1e

ηm1 + C2e
η(−m1)

m2
1

+
C3e

ηm3 + C4e
η(−m3)

m2
3

+

(
1− −uM2

M2

)
η2

2
− η3G

6M2

)
−C9η − C10. (59)

Equation (58) is heat conduction type and its solution satisfying condition f11(τ, η) = −f10(η)

of the form

f11 =
∞∑
n=1

Bne
−λ2nτ cos(λnη), (60)

where Bn = −2

1∫
0

f10(η) cos(λnη)dη, (61)

and λn = nπ. Substituting (59) in (61) we get,

Bn =− 1

ū

(
2(C1 + C2)m1 cos(nπ) sinh(m1)

m2
1(m2

1 + n2π2)
+

2(C3 + C4)m3 cos(nπ) sinh(m3)

m2
3(m2

3 + n2π2)

)
+

(
ūM2 − 1

M2

)
4 cos(nπ)

ūn2π2
.
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Substituting (59) and (60) in equation (54) we get,

f1 =
1
−
u

(
C1e

ηm1 + C2e
η(−m1)

m2
1

+
C3e

ηm3 + C4e
η(−m3)

m2
3

+

(
1− −uM2

M2

)
η2

2
− η3G

6M2

)
− C9η

− C10 +
e−π

2τ cos(πτ)

π3
−
u

2π(−1 +M2−u)

M2
−

2π3
(
(C3 + C4)(m2

1 + π2)m1 sinh(m3)

+(C1 + C2)(m2
3 + π2)m3 sinh(m1)

)
m1m3(m2

1 + π2)(m2
3 + π2)



− e−4π2τ cos(2πτ)

8π3
−
u

4π(−1 +M2−u)

M2
−

16π3
(
(C3 + C4)(m2

1 + 4π2)m1 sinh(m3)

+(C1 + C2)(m2
3 + 4π2)m3 sinh(m1)

)
m1m3(m2

1 + 4π2)(m2
3 + 4π2)



+
e−9π2τ cos(3πτ)

27π3
−
u

6π(−1 +M2−u)

M2
−

54π3
(
(C3 + C4)(m2

1 + 9π2)m1 sinh(m3)

+(C1 + C2)(m2
3 + 9π2)m3 sinh(m1)

)
m1m3(m2

1 + 9π2)(m2
3 + 9π2)

 .

Substituting f1 into equation (42) and integrating, we get the solution of dispersion coefficient
with help of MATHEMATICA 8.0 where C9 and C10 are constants given in the Appendix.

Similarly, K3(τ), K4(τ) and so on are obtained and we found that Ki(τ), i > 2 are negligibly
small compared to K2(τ). Hence, the dispersion model (40) now leads to

∂θm
∂τ

= K2
∂2θm
∂ξ2

. (62)

The exact solution of (62) satisfying the conditions (33) to (36) is obtained using Fourier
Transform(Sankara (1995)) as

θm(ξ, τ) =
1

2

[
erf

(
ξs
2

+ ξ

2
√
T

)
+ erf

(
ξs
2
− ξ

2
√
T

)]
, (63)

where T =
τ∫
0

K2(η)dη and erf(x) = 2√
π

x∫
0

e−z
2
dz.

The flow and heat transfer characteristics are the local skin friction coefficient Cf and the local
rate of heat transfer coefficient. Define

Cf =
2τ1

ρ(νPx

h
)2
, Nu =

qh

KT (T1 − T0)
, (64)
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where, τ1 = µ
(
∂u
∂y

) ∣∣∣∣∣
y=±h

is the wall shear stress and q = −KT

(
∂T ∗

∂y

) ∣∣∣∣∣
y=±h

is the heat flux

between the fluid and the wall.

By use of dimensionless quantities equation (64) can be written as:

Cf =
2

Re

∂U

∂η

∣∣∣∣∣
η=±1

, Nu =
∂T

∂η

∣∣∣∣∣
η=±1

, (65)

where Nu is the Nusselt number.

4. Results and Discussion

Dispersion of solute in combined free and forced convective fully developed flow of a couple
stress fluid bounded by porous beds under the influence of magnetic field is studied using
generalized dispersion model. The results are obtained to illustrate the influence of the Hartmann
number (M = 1, 1.5, 2), Grashof number (Gr = 0, 1, 2), couple stress parameter (a = 1, 20),
dimensionless time (τ = 0.06, 0.3, 0.6, 0.8) and porous parameter σ = (60, 120, 200) on the
velocity, temperature, skin friction coefficient, Nusselt numbers, dispersion coefficient and the
concentration profiles, while the values of some of the physical parameters are taken as constant
such as Pr = 100, Ec = 0.2, α = 0.1 and β1 = 0.1 in all the figures. We have extracted
interesting insights regarding the influence of all the parameters that govern this problem. The
influence of the parameters M,Gr, a, τ and σ on horizontal velocity, temperature, skin friction
coefficient, Nusselt numbers, dispersion coefficient and concentration profiles are analyzed from
Figures 2 to 21.

The expression for velocity profiles U are evaluated using equation (29) and are shown in Figures
3 and 4 for different values of the Grashof number (Gr) and couple stress parameter (a) with
η. It is seen that the effect of increasing Grashof number and couple stress parameter decreases
the velocity profile of the blood flow, and are parabolic in nature. Figures 2 and 5 for different
values of M and σ with η, reveal that the velocity profile decreases with the increase of the
Hartmann number (M) and porous parameter (σ). The effect of M on the velocity profile is
displayed. The presence of magnetic field normal to the flow in an electrical conducting fluid
introduces a Lorentz force which acts against the flow. This resistive force tends to slow down
the blood flow and hence, the boundary layer decreases with the increase of the magnetic field.

The expression for temperature distribution T are evaluated using equation (30) and are shown
in Figures 6 and 9 for different values of M and σ with η. It is observed that , temperature of
the blood increases with decrease of the value of M and σ. Figures 7 and 8 for different values
of Gr and a with η, show that temperature profile increases with increase of Grashof number
and couple stress parameter. It is also seen that the temperature is parabolic in nature, increasing
from its value at η = −1 to a maximum temperature around 3.2 and then, decreasing steadily to
its value at η = 1.

The expression for dispersion coefficient K2−Pe−2 are numerically evaluated using equation (42)
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and are shown in Figures 10 to 13 for different values of M,Gr, a and σ with dimensionless time
τ. Figure 10 shows that K2(τ)−Pe−2 decreases with increase in M . From Figures 11 to 13 reveal
that the axial dispersion coefficient increases K2(τ)−Pe−2 with the increase of Grashof number,
couple stress and porous parameter which reflects the existence of larger velocity variation across
the channel. The effects of above parameters on K2(τ)−Pe−2 is very significant, when τ is very
small and its effect is not so significant for large value of τ . For the values of Gr ≥ 2, it has
been observed that K2(τ)− Pe−2 reaches a fixed value. That is, where Gr ≥ 2, K2(τ)− Pe−2

becomes τ− independent.

The expression for mean concentration θm are numerically evaluated using equation (63) and are
shown in Figures 14 to 18 for different values of M,Gr, a, σ and τ with axial distance ξ.
Figures 15 to 17 reveal that there is marked variation of concentration with axial distance. It is
apparent from these figures that the effect of increasing Gr, a and σ is to decrease the peak value
of the mean concentration. This implies that the concentration is more distributed in ξ−direction
for larger and larger values of Gr. The curves are bell shaped and symmetrical about the origin.
θm increases with the decrease of the values of M and τ as shown in Figures 14 and 18. These
results are useful to understand the transport of solute at different times.

Figure (19) depicts that the effect of skin friction coefficient against M for different values of
Grashof number on the lower (η = −1) and upper (η = 1) wall. It shows that the shear stress
grows rapidly for increasing the Grashof number at the lower and upper wall. Cf decreases at
the lower wall and increases at the upper wall. Negative values show that flow reversal arises
within the boundary layer. The variation of Nusselt number with M is depicted in Figure 20
and in Figure 21. It is observed that the Nusselt numbers decrease with an increase in Grashof
number at both the walls η = −1 and η = 1.

5. Conclusion

An analysis is carried out to study the heat and mass transfer flow of couple stress fluids between
two parallel channels bounded by porous beds and the density is dependent on temperature. When
there is a uniform axial temperature variation along the walls, the primary flow shows incipient
flow reversal at the upper plate for an increase in temperature along that plate. Similarly flow
reversal at the lower plate occurs with a decrease in temperature along that plate. The magnetic
field, arising as a body couple in the governing equations is shown to increase the axis dispersion
coefficient.

Acknowledgments

The authors are grateful to the learned referees for their useful technical comments and valuable
suggestions, which led to a improvement of the paper.



AAM: Intern. J., Vol. 12, Issue 1 (June 2017) 555

Figure 2. Plots of velocity U versus η for different values of M

Figure 3. Plots of velocity U versus η for different values of Gr

Figure 4. Plots of velocity U versus η for different values of a

Figure 5. Plots of velocity U versus η for different values of σ
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Figure 6. Plots of temperature T versus η for different values of M

Figure 7. Plots of T versus η for different values of Gr

Figure 8. Plots of T versus η for different values of a

Figure 9. Plots of T versus η for different values of σ
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Figure 10. Variation of K2(τ)− Pe−2 with τ for different values of M

Figure 11. Variation of K2(τ)− Pe−2 with τ for different values of Gr

Figure 12. Variation of K2(τ)− Pe−2 with τ for different values of a

Figure 13. Variation of K2(τ)− Pe−2 with τ for different values of σ
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Figure 14. Plots of θm versus ξ for different values of Hartmann number M

Figure 15. Plots of θm versus ξ for different values of Grashof number Gr

Figure 16. Plots of θm versus ξ for different values of couple stress parameter a

Figure 17. Plots of θm versus ξ for different values of porous parameter σ
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Figure 18. Plots of θm versus ξ for different values of time τ

Figure 19. Plots of Cf versus M for different values of Gr

Figure 20. Plots of Nu versus M at η = 1 for different values of Gr

Figure 21. Plots of Nu versus M at η = −1 for different values of Gr
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Appendix

m1 =

√
a2+
√
a4−4a2M2
√

2
, m3 =

√
a2−
√
a4−4a2M2
√

2
,

a3 = em1 (ασ +m1) , a4 = e−m1 (m1 − ασ) ,

a5 = em3 (ασ +m3) , a6 = e−m3 (m3 − ασ) ,

a8 = m2
1e
m1 , a9 = m2

1e
−m1 ,

a10 = m2
3e
m3 , a11 = m2

3e
−m3 ,

C1 =− 1

I3

(I1a3a
2
10 + I2a4a

2
10 − I1a5a8a10 + I1a6a9a10 − I2a6a8a10 + I2a5a9a10

− I1a
2
11a3 − I1a11a6a8 + I1a5a9a11 − I2a

2
11a4 − I2a11a5a8 + I2a6a9a11),

C2 =− 1

I3

(I1a4a
2
10 + I2a3a

2
10 − I1a6a8a10 + I1a5a9a10 − I2a5a8a10 + I2a6a9a10 − I1a

2
11a4

− I1a11a5a8 + I1a6a9a11 − I2a
2
11a3 − I2a11a6a8 + I2a5a9a11),

C3 =− 1

I3

(I1a5a
2
8 + I2a6a

2
8 + I1a3 (−a10) a8 + I1a4a11a8 − I2a10a4a8 + I2a3a11a8

− I1a5a
2
9 − I1a10a4a9 + I1a3a9a11 − I2a6a

2
9 − I2a10a3a9 + I2a4a9a11),

C4 =− 1

I3

(I1a6a
2
8 + I2a5a

2
8 − I1a10a4a8 + I1a3a11a8 − I2a10a3a8 + I2a4a11a8 − I1a6a

2
9

− I1a10a3a9 + I1a4a9a11 − I2a5a
2
9 − I2a10a4a9 + I2a3a9a11),

C5 = 1
2

(−q1 − q2),
C6 = 1

2
(q1 − q2) ,

C9 = 1
ū

(
(C1−C2 coshm1)

m1
+ (C3−C4 coshm3)

m3
− G

2M2

)
,

C10 = −
(

1−ūM2

6M2 + (C1+C2 sinhm1)

m3
1

+ (C3+C4 sinhm3)

m3
3

)
,

I1 = ασ
(

1−G
M2 − up

)
,

I2 = ασ
(
G+1
M2 − up

)
,

I3 =a2
5a

2
8 − a2

6a
2
8 − 2a10a3a5a8 − 2a11a3a6a8 + 2a4a6a10a8 + 2a4a5a11a8 − a2

11a
2
3 − a2

10a
2
4

− a2
5a

2
9 + a2

6a
2
9 + a2

3a
2
10 + a2

4a
2
11 − 2a10a4a5a9 − 2a11a4a6a9 + 2a3a6a9a10 + 2a3a5a9a11,

I4 = Ec Pr
12a2M4 ,

I5 = −3C2
1M

4(a2(m2
1+M2)+m4

1)
m2

1
,

I6 = −3C2
3M

4(a2(m2
3+M2)+m4

3)
m2

3
,

I7 =
24M4(a2(M2−m1m3)+m2

1m
2
3)

(m1−m3)2
,

I8 =
24M4(a2(m1m3+M2)+m2

1m
2
3)

(m1+m3)2
,

I9 = −6C2
2M

4(a2(m2
1+M2)+m4

1)
2m2

1
,
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I10 = −6C2
4M

4(a2(m2
3+M2)+m4

3)
2m2

3
,

I11 =6a2
(
−2M4

(
C1C2m

2
1 + C3C4m

2
3

)
+ 2 (C1C2 + C3C4)M6 +G2 +M2

)
+ 12M4

(
C1C2m

4
1 + C3C4m

4
3

)
,

I12 = 24a2M2

m3
1
,

I13 = 24a2M2

m3
3
,

I14 = EcPr
12M4a2

,

q1 =I14

(
24a2C2e

m1M2 (G ((2−m1)M2 −m2
1)−m1M

2)

m3
1

− a2G2M2 − 4a2GM2

)
+

24I14a
2C1e

−m1M2 (G ((−m1 − 2)M2 +m2
1)−m1M

2)

m3
1

+
I14C4e

m3 (24a2M2 (G ((2−m3)M2 −m2
3)−m3M

2))

m3
3

+
I14C3e

−m3 (24a2M2 (G ((−m3 − 2)M2 +m2
3)−m3M

2))

m3
3

+ 6I14e
2(m1+m3)M4

(
−C

2
2e
−2m3 (a2 (m2

1 +M2) +m4
1)

2m2
1

− C2
4e
−2m1 (a2 (m2

3 +M2) +m4
3)

2m2
3

)
− I14I8

(
C1C3e

−m1−m3 + C2C4e
m1+m3

)
− I7I14

(
C2C3e

m1−m3 + C1C4e
m3−m1

)
+ I5I14e

−2m1 + I5I14e
−2m3 − I11I14,

q2 =− 1 + I14

(
−a2G2M2 + 4a2GM2 + I5e

2m1
)

+
24I14a

2C1e
m1M2 (G ((m1 − 2)M2 +m2

1)−m1M
2)

m3
1

+
24I14a

2C2e
−m1M2 (G ((m1 + 2)M2 −m2

1)−m1M
2)

m3
1

− I7I14

(
C2C3e

m3−m1 + C1C4e
m1−m3

)
− I8I14

(
C1C3e

m1+m3 + C2C4e
−m1−m3

)
+ I14I6e

2m3 +
I14C3e

m3 (24a2M2 (G ((m3 − 2)M2 +m2
3)−m3M

2))

m3
3

+
I14C4e

−m3 (24a2M2 (G ((m3 + 2)M2 −m2
3)−m3M

2))

m3
3

− I11I14

+ 6I14e
−2(m1+m3)M4

(
−C

2
2e

2m3 (a2 (m2
1 +M2) +m4

1)

2m2
1

− C2
4e

2m1 (a2 (m2
3 +M2) +m4

3)

2m2
3

)
.


