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Abstract 

 
In this paper a numerical approach combining the least squares method and a genetic algorithm 

is proposed for the determination of the source term in an inverse parabolic system (IPS). A 

numerical experiment confirm the utility of this algorithm as the results are in good agreement 

with the exact data. Results show that a reasonable estimation can be obtained by the genetic 

algorithm within a CPU with clock speed 2.7 GHz. 
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1. Introduction 

 
Inverse problems are encountered in many branches of engineering and science. In one particular 

branch, heat transfer, the inverse problem can be used to such conditions as temperature or 

surface heat flux, or can be used to determine important thermal properties such as the thermal 

conductivity or heat capacity of solids. 

 

Several functions and parameters can be estimated from the inverse parabolic problem: static and 

moving heating sources, material properties, initial conditions, boundary conditions, optimal 

shape etc. Fortunately, many methods have been reported to solve inverse parabolic problems 

(Alifanov, 1994; Beck et al., 1985; Beck et al., 1996; Beck, et al., 1986; Dowding and Beck, 

1999; Cabeza et al., 2005; Liu, 2008; Molhem and Pourgholi, 2008; Murio, 1993; Murio and 
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Paloschi, 1988; Pourgholi et al., 2009; Pourgholi and Rostamian, 2010; Shidfar et al., 2006; Zhou 

et al., 2010). 

 

In this paper, for                        we consider the following IPS in the 

dimensionless form 

 

 
{

   (   )      (   )    (   )  (   )    (   )  (   )     (   ) 
    (   )        (   )     (   )  (   )     (   )  (   )     (   )

          ( 1 ) 

 

{

  (   )     ( )        (   )     ( )                

   (   )     ( )        (   )     ( )                  
  (   )       ( )        (   )      ( )                  

 ( 2 ) 

 

and the over specified condition 

 

  ( )      (   )                   ( 3 ) 

 

where  (   )  (   ) and  (   ) are continuous known real-valued functions, 

  ( )   ( )   ( )   ( )   ( ) and   ( ) are infinitely differentiable known real-valued 

functions and    represents the final existence time for the time evolution of the problem, while 

the function f (x,t) is unknown which remains to be determined from some interior temperature 

measurements. 

 

System (1) - (3) arises, for example, in the study of chemical reactions (see e.g. (Bothe, 2003; 

Chipot et al. 2009; E´rdi and To´th, 1989 )), and in a wide variety of mathematical biology and 

physical situations (see e.g. (Hillen, and Painter, 2009; Lauffenburger et al. 1982; Shigesada et 

al. 1979)). The controllability properties of system (1)-(3) has been studied, for example, in 

[Ammar-Khodja et al. 2006; Ammar-Khodja et al. 2011; L. de Teresa, 2000; Gonza´lez-Burgos 

and P´erez-Garc´ıa, 2006; Le´autaud,2010; Russell, 1973 ]. See also [Ammar-Khodja et al. 2011] 

for a nice survey on this issue. The recent work [Ferna´ndez-Cara et al. 2010] studies system (1)-

(3) in one space dimension and with constant coupling coefficients. The cases of higher space 

dimensions and varying coupling coefficients (and in particular when the coefficients vanish in a 

neighborhood of the boundary) are, to our knowledge, completely open. 

 

We should note that, for a given function  (   ), we can prove the existence of a unique solution 

( (   )  (   )) of (1)-(3). More precisely, one can easily observe that system (1) with the 

conditions (2) can be reduced to 

 

 

{
 

 
  (   )       (   )    (   ) (   )    (   ) (   )     (   ) 

   (   )      (   )    (   ) (   )    (   ) (   )    (   ) 

 (   )    ( )       (   )    ( )                           

 (   )    (   )    (   )    (   )                         

 ( 4 ) 

 

where 

 

      ( )     ( )      ( )   (     )  ( )   
     ( )      ( )       ( )    (     )  ( )  
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      –      –   (  

 
 –   

 
                   

         ), 

 

and 

 
           ′

 
               (       ′

 
                       )   

 

We notice for     (   ) that, on the space (  ( ))  endowed with the natural inner product 

 
  ⟨ ⃗    ⟩   ( )     ( )    ⟨      ⟩ 

  ( )    ( )   ⟨     ⟩   ( )     ( )  
 

 

with  ⃗   (     ) and      (     )  the operator 

 
 

(
             
              

)  

 

with domain (  ( )    
  ( )) , is self-adjoint, where   ( ) and   

  are the usual Sobolev 

spaces. As a consequence, for          (  (    )),      ( ) and      ( ) with      
   ( ) the Cauchy problem (4) is well-posed in (  ( )) , in the sense of semigroup theory 

[Lions, 1988]. Moreover, for the general case  (   )  (   )      (    (   )), if we suppose 

that         ((   )    
   ( )) and (   )    (  ( )) , then there exists a unique solution 

(   ) of (4) satisfying 

 
          ((   )    

 ( ))     (          ( )) 
 

 

and 

 
             ((    )     

   ( ))   
 

 

More precisely, this result can be obtained by defining the bilinear form  

 

A: (   
  ( ))

 
  (   

   ( ))      

by 
 

 (    ⃗    )   ∫ ( ⃗  (   )     (   )                   )
 

 

     

 

 

verifying that A satisfies 

 

 )i)   for every  ⃗       (  
  ( ))  the function       (    ⃗    ) is measurable, 

 (ii)    (    ⃗    )          (   
  ( )) 

  –         (   ( )) 
  , 

 (iii)   (    ⃗    )          
(   

  ( ))
 

          (   ( )) 
 , for almost every           and for 

all     (  
  ( ))  , 
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where           and    are constants, and applying a similar argument to (Lions and Magenes, 

1961 Theorem 7.1), see also (Lions and Magenes,1961; Baiocchi, 1964; Lions and Magenes, 

1960; Lions and Magenes, 1968). 

 

We should remark that if the assumptions given above hold and   is known, one can obtain a 

unique solution (   ) of (1)-(2). But in the case when  (   ) depends only on   or  , by using 

the overspecified condition (16), one can find a unique solution  (   )    of the inverse problem 

(1) - (3). 

 

2. Numerical Technique 

 
In this section we will numerically investigate our IPS. Problem (1) - (3) can be solved in least-

square sense and a cost function can be defined as a sum of squared differences between 

measured temperatures and calculated values of  (   ) by considering guesses estimated values 

of  (   ). 

 

 
 ( )    ∑(        )

 

 

   

  ( 5 ) 

 

where                    , are calculated by solving the direct heat problem, To do this, we 

consider prior guess for  (   ). Also,       (  )                , are measured temperatures. 

To find optimal solution  (   )  Equation (5) must be minimum. 

 

Remark 1.  
 

In this study we use implicit finite difference approximation (Crank-Nicolson method) for 

discretizing problem (1) - (3).Therefore, 

 

               (      )                  

                     (      )                          

                                              

  

( 6 ) 

               (      )                   

                     (      )                           

                                

                                                                           
 

( 7 ) 

        (  )           (  )                           ( 8 ) 

        (  )           (  )                            –      ( 9 ) 

        (  )           (  )                                 (10) 

 

where x =    and       . 

 

By using Equations (6) - (10), we obtain the following linear algebraic system of equations 
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3. Genetic algorithm 

 
Genetic algorithms, primarily developed by Holland (Holland, 1975), have been successfully 

applied to various optimization problems. It is essentially a searching method based on the 

Darwinian principles of biological evolution. Genetic algorithm is a stochastic optimization 

algorithm which employs a population of chromosomes, each of which represents a possible 

solution. By applying genetic operators, each successive incremental improvement in a 

chromosome becomes the basis for the next generation. The process continues until the desired 

number of generations has been completed or the predefined fitness value has been reached. 

Typically binary coding is used in classic genetic algorithm, where each solution is encoded as a 

chromosome of binary digits. Each member of the population represents an encoded solution in 

the classic genetic algorithm. For many problems, this kind of coding is not natural. The genetic 

algorithm used in this work is not a classic genetic algorithm. Instead, the application of genetic 

algorithm to this discrete-time optimal control problem is called a real-valued genetic algorithm 

(RVGA). The continuous function is discrete for numerical computation and simulated by a 

chromosome. The value of each gene is a real number and indicates the heat generation at each 

time step (Liu, 2008). 

 
The procedure of an RVGA is as follows: 

 

Step 1.  Generate at random an initial population of chromosomes. 

Step 2.  Evaluate the fitness of each chromosome in the population. 

Step 3.  Select chromosomes, based on the fitness function, for recombination. 

Step 4.  Recombine pairs of parents to generate new chromosomes. 

Step 5.  Mutate the resulting new chromosomes. 

Step 6.  Evaluate the fitness of new chromosomes. 

Step 7.  Update population. 

Step 8.  Repeat Step 3 to Step 7, until the fitness function is convergent or less than a predefined 

value. 

 

4.  A modified real-valued genetic algorithm (RVGA) to 

determine  (   ) 

 
In this paper we use a modified RVGA for determining  (   )  In this algorithm, chromosomes 

are encoded as real-valued matrices. The     column of each chromosome illustrates          
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                . We consider each column of chromosomes as a gene. That      illustrates 

   gene of chromosome of  . For finding optimal solution of  (   ), Equation (5) must be 

minimum. For this purpose, we consider Equation (5) as fitness function and calculate simulated 

s by solving direct system for each chromosome. At the end of algorithm, the chromosome by 

lowest fitness is the best solution of  (   ). To determine the  (   ) we interpolate the best 

solution. To improve performance of RVGA, we added new step to algorithm after “mutation” 

operation, for modifying new chromosomes at each iteration. Figure 15 shows the flowchart of 

modified RVGA. 

 

The procedure of a modified RVGA is as follows: 

 

Step 1.  Generate at random an initial population of chromosomes. 

 

Step 2.  Evaluate the fitness of each chromosome in the population.  

 

Step 3.  Select some chromosomes as parents by tournament selection. 

 

Step 4.  For generating pair of new chromosomes, pair of parents crossover together as follow: 

 
                      (  –   )                                          

  (      )                         , 
 

 

where    illustrates first parent,    illustrates second parent,     illustrates first new 

chromosome,     illustrates second new chromosome,   and   are random numbers in 

            . 
 

Step 5.  For applying ”Mutation” operation on new chromosomes, selecting a gene of each new 

chromosome randomly and each element of genes adding by random number. 

 

Step 6.  Finding the first best gene between new chromosomes and copy that gene to first gene 

of all chromosomes. Then finding the second best gene between new chromosomes and 

copy that gene to second gene of all chromosomes. Continue this procedure for all 

genes. Now all new chromosomes are the same. For generating new hopeful 

chromosomes, genes of second to end chromosomes replace by genes of first 

chromosome adding by random small values. 

 

Step 7.  Evaluate the fitness of new chromosomes. 

 

Step 8.  Update the population. 

 

Step 9.  Repeat Step 3 to Step 8, until the fitness function is convergent or less than a predefined 

value. 

 

The flowchart of the proposed algorithm for determining  ( ) has been presented in Figure 15. 
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5. Numerical Results and Discussion 

 
The aim of this section is to see the applicability of the present numerical method described in 

Section 4 for solving our IPS. As expected IPS (1) is ill-posed and therefore it is necessary to 

investigate the stability of the present method by giving a test problem. Now, we give the 

following examples in                    . 

 

Our first example is 

 

 
{
  (   )     (   )    (   )    (   )   (   ) 

  (   )     (   )    (   )    (   )           
 

(11) 

 

 

 

{
 
 
 
 

 
 
 
  (   )              (√  )     (√  )                     

 (   )   
 ⁄                 (√  )     (√  )           

 (   )                                                         

 (   )  (  
 ⁄ )                                                 

 (   )  (    
   ⁄ )                                           

 (   )  (    
   ⁄ )                                           

 (12) 

 

by the over specified condition 

 

  (   )     (       )                                     (13) 

 

Here, the exact values of  (   ),  (   ) and  (   ) are             (            

    (√  )      (√  )) and     (                         (√  )       (√  )), 

respectively. 

 

The second example is 

 

 
{
  (   )     (   )    (     ( )) (   )  (    ( )) (   )   (   ) 

  (   )     (   )  (     ( )) (   )  (    ( )) (   )             
 

(14) 

 

 

 

{
 
 
 

 
 
 

 (   )      ( )                                        

 (   )     ( )                                         

 (   )                                                 

 (   )                                                 

 (   )  (    
    ⁄                                   

 (   )  (   
   ⁄ )                                     

 

 

 

(15) 

 

 

by the over specified condition 

 

  (   )     (       )                                      (16) 
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where the exact values of  (   ),  (   ) and  (   ) are         (  ),        ( ) and 

       ( ), respectively. 

 

The experimental data  (  ) (measured temperatures at          ) are obtained from the exact 

solution of the direct problem by adding a random perturbation error to the exact solution of the 

direct problem in order to generate noisy data, where          and   is random value in (   ). 

 

Remark 2.  
 

In an IS there are two sources of error in the estimation. The first source is the unavoidable bias 

deviation (or deterministic error). The second source of error is the variance due to the 

amplification of measurement errors (stochastic error). The global effect of deterministic and 

stochastic errors is considered in the mean squared error or total error, (Dowding and Beck, 

1999). 

 

 
  [

 

(   )(   )
∑ ∑ (    ̂      )

  
   

 
   ]

 

 
, 

 

(17) 

 

where (     )(     ) is the total number of estimated values,     ̂ is calculated values from 

interpolated equation and      is exact values of  (   ). 

 

In our examples here, a population of 20 chromosomes of 100 genes (                      
      ) is used as the initial guess to obtain for numerical results of modified RVGA. Also each 

gene has 9 elements (                          ). Table 1 presents the results for 1 to 1000 

generations for the first example and also Table 2 presents the results for 1 to 10000 generations 

for the second example. Note that   calculated by 900 total number of points. 

 

Table 1. The results of modified RVGA for a population of 20 chromosomes of 100 genes for 

1  to 1000 generations 

Gen. Best fitness Time(s) S 

1  3.3079e − 003 1.4602  0.3800 

100 3.1073e − 004 99.7811 0.0756 

200 1.8876e − 004 199.5500 0.0727 

300 9.6134e – 005 298.7181 0.0420 

400 7.7658e − 005 397.6857  0.0479 

500 1.1534e − 005 491.71616 0.0343 

600 1.7591e − 005 601.0169 0.0415 

700 5.1188e − 006 701.3476  0.0286 

800 3.2938e − 006 791.4607 0.0168 

900 8.5618e − 007 0.0068 0.0112 

1000  4.7571e − 007 996.1871  0.0072 
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Table 2. The results of modified RVGA for a population of 20 chromosomes of 100 genes for 

1 to 10000 generations. 

 

Gen. Best fitness Time(s) S 

1 3.1719e − 001 2.9304  1.7655 

100 3.2618e − 002 3068.7060 0.5948 

200 7.1283e − 002 6091.6555 0.1425 

300 7.4315e − 002 9049.7577 0.0973 

400 8.4910e − 003 11930.9340   0.0867 

500 4.9218e − 003 15032.7922 0.0965 

600 9.5096e − 004 18152.1576 0.0733 

700 9.7175e − 004 21188.5469   0.0764 

800 6.3248e − 005 24124.0975 0.0178 

900 9.0588e − 006 26981.9134 0.0134 

1000 4.1515e − 006 29998.4709   0.0068 

 

Figures 1 and 2 show the exact and numeric  (   ) for the first example by implementing the 

modified RVGA for 1000 generations. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. Exact f(x, t) of the first example 
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Figure 2. Numeric f(x, t) by implementing modified RVGA for 1000 generation in 

the first example 

 

Figures 3 to 7 show exact and numeric  (   ) for the first example by implementing modified 

RVGA for 1000 generations, where                     and     respectively. 
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Figure 3. Exact and numeric f(0.1, t) by implementing the modified RVGA for 

1000 generations in the first example 
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Figure 4. Exact and numeric f(0.3, t) by implementing the modified RVGA for 

1000 generations in the first example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Exact and numeric f(0.5, t) by implementing the modified RVGA for 1000 

generations in the first example 
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Figure 6. Exact and numeric f(0.7, t) by implementing the modified RVGA for 1000 

generations in the first example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. Exact and numeric f(0.9, t) by implementing the modified RVGA for 1000 

generations in the first example 
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Figures 8 and 9 show the exact and numeric  (   ) for the second example by implementing the 

modified RVGA for 10000 g. 

 

 

 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 

 

                                     Figure 8. Exact f(x, t) of the second example 
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Figure 9. Numeric f(x, t) by implementing the modified RVGA for 10000 generations in the 

second example 
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Figures 10 to 14 show exact and numeric  (   ) for the second example by implementing the 

modified RVGA for 10000 generations, where                     and      respectively. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 10.  Exact and numeric f(0.1, t) by implementing the modified RVGA for 

10000 generations in the second example 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 11. Exact and numeric f(0.3, t) by implementing the modified RVGA for 

10000 generations in the second example 
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Figure 12. Exact and numeric f(0.5, t) by implementing the modified RVGA for 

10000 generations in the second example 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 13. Exact and numeric f(0.7, t) by implementing the modified RVGA for 

10000 generations in the second example 
 
 
 
 
 
 
 
 

 
 

 

 

Figure 14. Exact and numeric f(0.9, t) by implementing the modified RVGA for 

10000 generations in the second example 
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Figure 15. Flowchart of the modified RVGA 

 

 

6. Conclusion  

 

i.  The present study successfully applied a numerical method to IPS (1) - (3). 

ii.  To solve the IPS by using our genetic algorithm, the unknown function will be guessed and 

we do not need the regularization. This will improve the execution time. 

iii.  Results show that a reasonable estimation can be obtained by a genetic algorithm within a 

CPU with clock speed 2.7 GHz. 

iv.  The present method has been found stable with respect to small perturbation in the input 

data. 
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