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Abstract 

 
Circulant matrices over finite fields are widely used in cryptographic hash functions, Lattice 

based cryptographic functions and Advanced Encryption Standard (AES). Maximum distance 

separable codes over finite field GF  2  have vital a role for error control in both digital 

communication and storage systems whereas maximum distance separable matrices over finite 

field GF  2  are used in block ciphers due to their properties of diffusion. Rhotrices are 

represented in the form of coupled matrices. In the present paper, we discuss the circulant- like 

rhotrices and then construct the maximum distance separable rhotrices over finite fields. 

 

Keywords: Circulant rhotrix; Vandermonde matrices; Finite field; Maximum distance 

separable rhotrices 
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1. Introduction 
 

Ajibade (2003) introduced the concept of rhotrix as a mathematical object which is, in some 

way, between 2×2–dimensional and 3×3–dimensional matrices. He introduced a 3×3-

dimensional rhotrix defined as 
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where edcba ,,,,  are real numbers and cRh )( 3  is called the heart of rhotrix   . He defined 

the operations of addition and scalar multiplication, respectively for a rhotix of size three as 

given below; 
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be another 3-dimensional rhotrix, then 
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and for any real number  , 
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In the literature of rhotrices, there are two types of multiplication of rhotrices namely heart 

oriented multiplication and row-column multiplication. In the present paper, we use the row-

column multiplication. Ajibade discussed the heart oriented multiplication of 3-dimensional 

rhotrices as given below: 
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Further, it is algorithmatized for computing machines by Mohammed et al. (2011) and also 

generalized the heart oriented multiplication of 3-dimensional rhotrices to an n-dimensional 

rhotrices in (2011). The row –column multiplication of 3-dimensional rhotrices is defined by 

Sani (2004) as follows: 
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Sani (2007) also discussed the row-column multiplication of high dimension rhotrices as follows: 

Consider an n  -dimensional rhotrix 
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where   2/1 nt and denote it as 
lkijn caP ,  with tji ...,,2,1,   and 1...,,2,1,  tkl . Then 

the multiplication of two rhotrices nP  and nQ  is defined as follows: 
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Rhotrices and construction of finite fields were discussed by Tudunkaya et al. (2010).  The 

investigations of rhotrices over matrix theory and polynomials ring theory were given by Aminu 

(2009, 2012). The extended heart oriented method for rhotrix multiplication was given by 

Mohammed (2011). Algebra and analysis of rhotrices is discussed in the literature by Ajibade 

(2003), Sani (2004, 2007), Tudunkaya and Makanjuola (2010), Absalom et al. (2011), Sharma 

and Kanwar (2012, 2013), Sharma and Kumar (2013, 2014a, 2014b) and Sharma et al. (2013a, 

2013b, 2014). Sharma et al. (2015) introduced circulant rhotrices in the literature of rhotrices. 

 

Circulant matrices are widely used in different areas of cryptography such as cryptographic hash 

function WHIRLPOOL, Lattice based cryptography and at the diffusion layer in Advanced 

Encryption Standard (AES) as discussed by Menezes et al. (1996).  

 

Maximum distance separable (MDS) matrices have diffusion properties that are used in block 

ciphers and cryptographic hash functions. There are several methods to construct MDS matrices. 

Sajadieh et al. (2012) and Lacan and Fimes (2004) used Vandermonde matrices for the 

construction of MDS matrices. Sajadieh et al. (2012) proposed the construction of involutry 

MDS matrices from Vandermonde matrices. Circulant matrices are also used for the construction 

of MDS matrices. Gupta and Ray (2013, 2014) used companion matrices and circulant-like 

matrices, respectively for the construction of MDS matrices. Junod et al. (2004) constructed new 

class of MDS matrices whose submatrices were circulant matrices. Circulant matrices are used to 

improve the efficiency of Lattice-based cryptographic functions.  
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Definition 1.1. 
 

The dd   matrix of the form 

 



























0321

2101

1210

aaaa

aaaa

aaaa

dd

d











 

 

is called a circulant matrix and is denoted by  110 ,...,, daaacir . 

 

Definition 1.2. 
 

A circulant rhotrix nC  is defined as 
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where  1...,,2,1,0;...,,2,1,0,  djdiba ji  are real numbers, n  is an odd positive integers 

and it is denoted by     100 ,...,,,..., dd bbaacir . Two coupled circulant matrices of nC  are 
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Definition 1.3. 

 

Let F  be a finite field, and p , q  be two integers. Let xMx   be a mapping from 
pF  to 

qF  

defined by the pq matrix M . We say that it is an MDS matrix if the set of all pairs 

 xMx ,  is an MDS code, that is a linear code of dimension p , length qp   and minimum 

distance 1q . In other form we can say that a square matrix A  is an MDS matrix if and only if 

every square sub-matrices of A   are non-singular. This implies that all the entries of an MDS 

matrix must be nonzero. 

 

Definition 1.4. 
 

 An m   rhotrix over a finite field K  is an MDS rhotrix if it is the linear transformation 

  Axxf    from 
nK  to 

mK  such that that no two different    - tuples of the form   xfx,  

coincide. The necessary and sufficient condition of a rhotrix to be an MDSR is that all its sub-

rhotrices are non-singular. 

 

The construction of the MDS rhotrices is discussed by Sharma and Kumar in (2013). The 

following Lemma 1.5 is also discussed in (2013). 

 

Lemma 1.5. 
 

Any rhotrix    over GF(  ) with all non-zero entries is an MDS rhotrix iff its coupled matrices 

441 M  and 332 M  are non-singular and all their entries are non-zero. 

 

Now, we discuss two different types of circulant-like rhotrices. We also construct the maximum 

distance separable rhotrices by using the circulant- like rhotrices. 

 

2. MDS Rhotrices from Type-I Circulant-Like Rhotrices 

 
Circulant-like matrices are used in block ciphers and hash functions. Rhotrices are represented 

by the coupled matrices and hence the circulant rhotrices. Therefore, circulant- like rhotrices can 

play an important role in the designing of block ciphers and hash functions. We discuss here 

Type-I circulant- like rhotrices and then construct maximum distance separable rhotrices. 
 

The dd  matrix 
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is called Type-I circulant- like matrix, where  210 ...,,,  daaacirA ,  
timesd

bbB

1

...,,



 , ia ’s and a  

are any non-zero elements of the underlying field. This matrix is denoted as Type-I

  210 ...,,,,, daaacirba . 

 

Definition 2.1. 
 

Type-I circulant-like rhotrix: 

 

The Type-I circulant rhotrix    is defined as 
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where  1...,,2,1,0;1...,,2,1,0,,,  djdibaba ii  are real numbers, n  is an odd positive 

integer and is denoted by [(       (         ))    (         )]. Conversion of a rhotrix to 

a coupled matrix is discussed by Sani (2008) and had shown that the rhotrix    consists of two 

coupled matrices 
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which are denoted as   10 ,,,,  daacirbaA   and  .,, 10  dbbcirB      

 

Theorem 2.2. 
 

Let 7R  be Type-I circulant-like rhotrix and   12 ,1,1,1,  aaciraaA  and 

 2,1, aaacirB   be defined over GF  ,2  where a  is the root of irreducible polynomial 

  14578  xxxxxp  in the extension field of GF  82 . Then, 
3A  and 

3B  form MDS 

rhotrix 3

7R  of order 7 . 

 

Proof: 

 

For given   12 ,1,1,1,  aaciraaA  , we have 
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Since, a  is the root of 8 7 5 4 1,x x x x     therefore 

 

014578  aaaa , 

that is, 

  ,13467  aaaaa  

it gives, 

,34671 aaaaa   
23562 aaaaa   

and 

.2453 aaaaa   

 

Therefore, 

 

                            ;0]1[]1[ 34567153   aaaaaaaaaA        

                           ;011]4[]1[]3[]1[]2[]1[ 35226333   aaaaaAAA  

                          ;011]1[]4[]1[]3[]1[]2[ 35226333   aaaaaAAA  

                          ;0]4[]4[]3[]3[]2[]2[ 342335333   aaaaaaaAAA  
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                         ;011]2[]4[]4[]3[]3[]2[ 247125333   aaaaaaaaAAA  

                         .011]3[]4[]2[]3[]4[]2[ 36225333   aaaaaaaAAA  

 

Clearly 
3A  is MDS matrix. Now, for 
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we have,  
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Therefore, 

                ;01]3[]3[]2[]2[]1[]1[ 26333  aaaBBB  

                                            ;0]1[]3[]3[]2[]2[]1[ 345333  aaaBBB  

                                            .0]1[]2[]2[]3[]3[]1[ 35333  aaaBBB  

 

Clearly 
3B  is MDS matrix. The rhotrix of the coupled matrices 

3A  and 
3B is 
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that is, 
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Therefore, from Lemma 1.5, it is clear that 3

7R  is maximum distance separable rhotrix (MDSR).

 

 

On the similar arguments we can prove the following theorems. 

 

Theorem 2.3. 
 

Let 7R  be Type-I circulant-like rhotrix.   211 ,1,1,,   aaciraaA  and  12 ,,  aaacirB  be 

defined over GF  ,2  where a  is the root of irreducible polynomial   14578  xxxxxp  

in the extension field of GF  82 . Then, 
3A  and 

3B  form MDS rhotrix 3

7R  of order .7  

 

Theorem 2.4. 
 

Let 7R  be Type-I circulant-like rhotrix.   1,1,1,, 121   aaciraaA  and 

 11 ,1,   aaacirB  be defined over GF  ,2   where a  is the root of irreducible polynomial 

  14578  xxxxxp  in the extension field of GF  82 . Then, 
3A   and  

3B   form MDS 

rhotrix 3

7R  of order .7  

 

Theorem 2.5. 
 

Let 7R  be Type-I circulant-like rhotrix.   1,,1,,1 21   aaciraaA  and  1,1,  aaacirB  

be defined over GF  ,2  where a  is the root of irreducible polynomial 

  14578  xxxxxp  in the extension field of GF  82 . Then, 
3A and 

3B  form MDS 

rhotrix 3

7R  of order .7  
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3. MDS Rhotrices from Type-II Circulant-Like Rhotrices 

 
Circulant- like matrices of Type-II are useful in block ciphers and also used to construct 

maximum distance separable matrices for diffusion layers in Adnanced Encryption Standard 

(AES). Therefore, we introduce circulant-like rhotrices and then use them to construct the 

maximum distance separable rhotrices. 

 

The dd 22   matrix 
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is called Type-II circulant- like matrix, where  10 ...,,  daacirS . This matrix is denoted as 

Type II   10 ...,, daacir . 

 

Definition 3.1. 

 
Type-II circulant-like rhotrix: 

 

Two coupled matrices 
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form Type-II circulant rhotrix, where   is even ordered circulant matrix  10 ,, daacir   and 

10 ,,, daaa   are real numbers. It is denoted by Type-II       1010 ...,,,1,,,,  dd aaciraaacir  .              

 

Example. 
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Thus, the coupled matrices are 
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Therefore, Type-II circulant-like rhotrix
 
is  
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Theorem 3.2. 
 

Let 7R  be a Type-II      ],1,1,,a1,cir[ 1-1 acira  rhotrix defined over GF  ,2  where a  is the 

root of irreducible polynomial   14578  xxxxxp  in the extension field of GF(  ). 

Then 3

7R  is an MDS rhotrix of order .7  

 

Proof: 
 

Let 
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and  11, .cir a   Therefore, we have 
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.                                       (3.1) 

 

Here, a  is the root of   14578  xxxxxp . Therefore, 

 

,34671 aaaaa   
23562 aaaaa   

and  

.2453 aaaaa   

 

This gives, 
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                          .0]1[]4[]2[]3[ 245333   aaaaa  

  

Clearly, 
3  is MDS matrix. Now, 
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The matrix (   ) gives, 
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                           ;0]1[]1[ 33  a  

                           ;0]1[]3[]1[]2[]3[]1[]2[]1[ 356223333   aaaaaaa  

                           ;011]3[]3[]2[]2[ 2356233   aaaaaaa  

                           .01]2[]3[]3[]2[ 235673133   aaaaaaa  

 

Clearly 3  is MDS matrix. Using (3.1) and (3.2), we obtain MDS rhotrix 3
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In the similar ways we can prove the following theorems. 

 

Theorem 3.3. 
 

Let 7R  be a Type-II      ],1,1,,,[ 12 aciraaacir  circulant rhotrix defined over GF  ,2  where a  

is the root of irreducible polynomial   14578  xxxxxp  in the extension field of GF

 82 . Then, 3

7R  is an MDS rhotrix of order .7  

 

Theorem 3.4. 
 

Let 7R  be a Type-II      ],1,1,,,1[ 11  aciraaacir  circulant rhotrix defined over GF  ,2  

where a  is the root of irreducible polynomial   14578  xxxxxp  in the extension field 

of GF  82 . Then, 3

7R  is an MDS rhotrix of .7  
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Theorem 3.5. 
 

Let 7R  be a Type-II      ],1,1,,1,1[ 1 aciraacir  circulant rhotrix defined over GF  ,2  where 

a  is the root of irreducible polynomial   14578  xxxxxp  in the extension field of GF

 82 . Then, 3

7R  is an MDS rhotrix of order .7  

 

4. Conclusion 
 

Two different forms of circulant-like rhotrices are introduced which are further used to construct 

the MDS rhotrices with the elements 12 ,,1,  aaaa  where a  is the root of constructing 

irreducible polynomial   14578  xxxxxp in the extension field of GF  .28   
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