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Abstract 
 
In this presentation a numerical solution for the solution of fractional order of elliptic partial 

differential equation in 
2R is proposed. In this method we use the Radial basis functions (RBFs) 

method to benefit the desired properties of mesh free techniques such as no need to generate any 

mesh and easily applied to multi dimensions. In the numerical solution approach the RBF collocation 

method is used to discrete fractional derivative terms with the Gaussian basis function. Two 

dimensional numerical examples are presented and discussed, which conform well with the 

corresponding exact solutions. 

 

Keywords: Conformable fractional calculus; radial basis function; collocation method 

 

MSC 2010 No.: 65L60, 26A33 
 
 

1. Introduction 
 

In a number of practices, data is produced with no knowledge of a function from which it was 

derived. Therefore, an approximation model is needed. However, many physical systems could 

only be modelled by using the non-integer order of derivatives and integrals. For instance, non-

integer order of models are studied in control theory, computational analysis and engineering 

Kilbas (2016), Samko (1993). Thus, a number of new definitions have been introduced in 

academia to provide the best method for fractional calculus. Here, all fractional derivatives do 

not provide some properties such as Product Rule, Quotient Rule, Chain Rule, Roll’s Theorem 

and Mean Value Theorem. To overcome some of these and other difficulties, Abdeljawad (2015), 

Khalil (2014), Katugampola (2014), came up with an interesting idea that extends the familiar 

limit definition of the derivative of a function. In this work, we focus on numerical solution of 

partial differential equations which are modelled with Katugampola derivatives Katugampola 

(2014). 

Poisson equation is one of the most popular elliptic differential equations with broad utility in 

theoretical physics, mechanical engineering and electrostatics. However, a number of physical 

systems could only be modelled by using the non-integer order of derivatives and integrals. A lot 

 

Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 12, Issue 1 (June  2017),  pp. 470 - 478 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

http://pvamu.edu/aam


AAM: Intern.J., Vol. 12, Issue 1 (June 2017)  471 

 

of analytical and numerical methods of such systems have been proposed in academia such as 

variation iteration method Khan (2011), fractional finite difference method Borhanifar (2012), 

Meerschaert (2016), homotopy perturbation method Li (2009), Song (2007), Adomian 

decomposition method Yang (2010), Grag (2011) and any other areas Eslami (2016a), Eslami 

(2016b), Ekici (2016). 

In addition to this, radial basis functions method is one of the more practical ways of solving 

fractional order of models. The most important property of an RBF technique is that there is no 

need to generate any mesh and so it is called the mesh-free method. One only requires the 

pairwise distance between points for an RBF approximation Buhmann (2003), Cheney (1999). 

This method is easy to implement in multi dimensional cases due to the nature of RBF. On the 

other hand in order to solve partial differential equations (PDEs) Kansa proposed RBF 

collocation method which is mesh-free and easy-to-handle in comparison with the other methods 

Kansa (1990a), Kansa (1990b), Franke (1998). 

This prospective study was designed to investigate the use of RBF methods to solve the 

conformable fractional elliptic partial differential equations via Kansa's collocation method. The 

remainder of this work is organized as follows: In Section 2, the related definitions of RBFs is 

summarised. Then, non integer order of Poisson equation is summarized in Section 3. In Section 

4, the conformable fractional derivative and integrals have been reviewed. The computational 

scheme is given in Section 5, while some numerical experiments are presented in Section 6. 

Finally, we have summarised the current study in Section 7. 
 

2. Radial Basis Function Interpolation 
 

In this part, the fundamental concept of the mesh-free radial basis function interpolation are 

explained. Consider a function RR du :  a real valued function with d  variables, which is to 

be approximated by RR d:
X
I , for given values niu i ,,2,1:)( x , where  

nii ,,2,1: x  is a set of distinct points in dR , named the center set X . 

 

Then, the approximation to the function u  is of the form:  
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where RR d

k :  is a univariate radial basis function. Now the interpolation condition can be 

constructed as )()( mm u xx 
X
I , Nm ,,2,1  . Namely, the interpolation condition is  
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In other words, the system of matrix for interpolation condition can be written as }{}]{[ uA  , 

where the entries of the matrix A  are )(, kmkkmA xx   such that Nkm ,,2,1,  ,  

T

N},,,{ 21    and T

Nuuuu },,,{ 21  . This scheme is also called RBF collocation method. 

The interpolant of )(xu  is unique if and only if the matrix X  is non-singular. It has been 

discussed about sufficient conditions for )(r  to guarantee non-singularity of the a  matrix 
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Buhmann (2003), Cheney (1999). 

 

Commonly used radial basis functions are  
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In addition to these, RBFs can be stated with the help of a scaling parameter called the shape 

parameter  . This can be done in the manner that )(r  is replaced by )( r . In general, shape 

parameters have been chosen arbitrarily since there are no exact results about how to choose the 

best shape parameter, and  so it can be decided by the user. 

 

3.  Poisson Equations  
 

The general form of Poisson equation on a finite domain ]}1,0[]1,0[),(|),{(  yxyx  is  

 

),,(),(2 yxfyxu   

 

where 2 is the Laplace operator. In two dimensional Cartesian coordinates the Poisson equation 

takes the form  

 

 

 

 

 

In the case of 0),( yxf , Poisson equation convert to Laplace's equation. Here, we begin by 

briefly reviewing the fractional Poisson equation. The fractional order of Poisson equation can be 

given as follows:  
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with Dirichlet boundary conditions. In order to provide mesh-free numerical solution of Equation 

(1), we will use the radial basis function method which will be summarized below. 

 

4. Conformable Fractional Calculus 
 

In this paper, we will present and test conformable fractional version of ordinary differential 

equations with the help of the Katugampola conformable fractional calculus. In detail, 

).,(),(
2

2

2

2

yxfyxu
yx





















AAM: Intern.J., Vol. 12, Issue 1 (June 2017)  473 

 

Katugampola conformable derivatives, or  -derivatives, for  1,0  and ),0[ t  given by 
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provided the limits exist (for detail see, Katugampola (2014)). If u  is fully differentiable at ,t   

then,  
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A function u  is   -differentiable at a point 0t  if the limit in (2) exists and is finite. This 

definition yields the following results; 

 Theorem 1. 

Let  1,0  and  vu,   be   differentiable at a point  0t . Then, 

      ,. vbDuaDbvauDi    for all ,R, ba     

   ,0. Dii for all constant functions   ,tf   
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 Definition 1. 

Let ]1,0(  and .0 ba    A function : [ , ] Ru a b   is   -fractional integrable on ],[ ba  if the 

integral 
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exists and is finite. All   -fractional integrable on ],[ ba  is indicated by   baL ,1
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where the integral is the usual Riemann improper integral, and ]1,0( . 

We will also use the following important results, which can be derived from the results above. 

 Lemma 1. 

Let the conformable differential operator D  be given as in (1), where ]1,0(  and 0t , and 

assume the functions u  and v  are   -differentiable as needed. Then, 

i.      ttD ln  for 0t , 
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In this study, we introduced numerical solution of Katugampola type conformable fractional 

ordinary differential equation via radial basis function collocation method. 

  

5. Computational Scheme 
 

In this section, we present a numerical scheme to solve fractional elliptic partial differential 

equation via non-symmetric method with radial basis functions. Let take the Poisson equation of 

the form  
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with Dirichlet boundary conditions where 2R . Thus, we are trying to compute u  while f   

and g  are fixed. We can now use Kansa's RBF collocation method Kansa (1990a), Kansa 

(1990b). We build in a simple one-dimensional model. Let us propose an approximation solution 

u   of the form  
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where Nxxx ,,, 21 X  are the set of nodes in  . Then, the collocation matrix which constructed 

by using Poisson equation  and boundary condition  to the collocation points X  will be of the 

form 
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where the two blocks are constituted of entries:  
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where I  and B  represent a set of interior and a set of boundary points of the set of X  collocation 

points, respectively (i.e., BIX  ). The problem described above is called well-posed (or 

correctly-set) if the linear matrix system FA , where F  is composed of )]([ ixff , Iix , 

and )]([ ixgg ,  Bix , has a unique solution. The outstanding properties of multiquadrics in 

terms of certainty and complexity, made Kansa to particularly suggest its use.  

 

The main difference between numerical solution of integer and non-integer order of elliptic 

PDE's is calculation of RBF derivatives. In other words, one need to compute conformable 

fractional derivatives of any radial basis functions, say multiquadric. An example is Katugampola 

fractional derivative of multiquadric which is given below  
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These results are used straight-forwardly in the collocation radial basis functions for solving 

fractional PDEs. Although there appears infinite sums in the previous formulas, one can truncate 

the terms once they are smaller than the machine precision. 

Consequently, we have the following matrix system: 

 






















































































N

N

N

N

NNN

NNN

N

N

g

f

f

f

1

2

1

1

2

1

,1,

,1

,

1,1

,

,2

,

1,2

,

,1

,

1,1

,











































. 

 

As a result, the matrix system of N  equations with N  unknowns is available. Then we must 

solve this system to calculate the unknown coefficients. Hence, we have used the Gauss 

elimination method with total pivoting to solve such a system. Consequently, )(xu  given in 

equation (3) can be computed. 
 

6. Numerical Experiments 
 

In order to verify the proposed method in the previous section we will give some numerical 

experiments results of some fractional Poisson equations. In all our numerical experiments, the 

numerical solution of PDEs are evaluated at 100100 equally spaced points (these are uniformly 

distributed random points) in the domain 2]1,0[ R . This range can be generalized to a wider 

range of possible solutions. In these experiments we use the multiquadric basis function and take 

the 4 . The implementation of the method in all our experiments has been done in Matlab. 

Finally, in order to show the applicability of the proposed technique under all circumstances we 
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have used different non-integer order of PDEs. 

Experiment 1. 

Let us consider the following conformable fractional Poisson equation  
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on a finite domain 2]1,0[),( yx  with the boundary condition  

 

.),(0),(  yxyxu . 

 

The exact solution is given by )1()1(),( yyxxyxu  .  

 

Figure 1.  Approximate solution of target function  ), yxu(  (left) and maximum error for RBF 

solution (right) 

 

Experiment 2. 

Let us consider the Conformable fractional Poisson equation  
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on a finite domain 2]1,0[),( yx  with the boundary condition  
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where }0],1,0[|),{(1  yxyx  and 12 \ . The exact solution is given by 

 

)2/cos()sin(),( yxyxu  .  

 Figure   

 
Figure 2.  Approximate solution of target function  ), yxu(  (left) and maximum error for RBF 

solution (right) 

 

In Figure 1 and Figure 2, we present the multiquadric solution conformable fractional Poisson 

equations along with its maximum error, respectively. These figures show that the RBF method 

has been successfully applied to the numerical solution problem of fractional order Poisson 

equation in 2R  with encouraging performance. These results confirm the superior performance of 

RBF methods for numerical solution of fractional PDEs.  

7. Conclusion 

The purpose of the current study was to propose a numerical scheme to solve conformable 

fractional ordinary differential equation with the help of radial basis function collocation 

technique. The contribution of this study has been to confirm by numerically. The experiments 

verified that the numerical solutions are compatible with the exact solutions. 
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