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Abstract 

In the present study, the classical fourth-order Runge-Kutta method with seventh-order 

automatic step-size control has been carried out to examine the stability of triangular libration 

points in the Sun-Jupiter system. The Sun is a highly luminous body and Jupiter is a highly 

spinning body, so radiation pressure of the Sun and oblateness of the Jupiter cannot be 

neglected. These factors must have some effects on the motion of the infinitesimal mass 

(spacecraft) and consequent effects on the stability of the triangular libration points. It is to be 

noted that in our problem, infinitesimal mass exerts no influence of attraction on the 

primaries (Sun and Jupiter) but its motion is influenced by the primaries. Therefore, the 

equations of motion of the infinitesimal mass moving in the gravitational field of the 

radiating Sun and oblate Jupiter have been established for numerical integration. To check the 

stability of the libration points, the infinitesimal mass is allowed to librate for trajectory 

generation in the vicinity of one of the triangular libration points. Using double-precision 

computation, the Jacobian constant was calculated in order to observe the validity of the 

trajectory generation throughout the numerical integration. This constant of integration was 

checked to make sure that it remained constant at least to eight decimal places, so that other 

data may be accurate. Following all the above computational techniques, the maximum 

displacement and maximum velocity envelopes were constructed in the light of previous 

authors. The reason behind the assumption of the maximum displacement and maximum 

velocity envelopes is that the spacecraft (infinitesimal mass) will librate for a long time 

within the region of the envelopes without crossing the x-axis. If the area of the envelope is 

not maximum within the given time limit and the infinitesimal mass crosses the x-axis, then 

by changing the initial conditions; we attempt to construct the envelopes of maximum area 

following previous authors. If the area of the envelope is maximum it means spacecraft 
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(infinitesimal mass) will librate in wider area for a long time without crossing the x-axis and 

longtime libration will give the higher range of stability. From our observation, it is found 

that due to the oblateness of Jupiter, the range of stability is reduced but photogravitation of 

the Sun has no significant effect on the triangular libration points. 

Keywords: Restricted Three-body problem; Libration Points; Photogravitation; Oblateness;     

           Critical mass; Poincare Surface of Section; Stability; Commensurability 

 

MSC 2010 No.: 37M05, 70F07, 70F15 

 

1. Introduction  
 

Recently some space researchers are engaged in search of stable libration points to set a space 

station and parking zone for the space voyage and hence they are checking the stability of 

triangular libration points. In the Classical Restricted Three-body Problem, all collinear 

libration points are unstable but according to some authors, the triangular libration points are 

linearly stable whereas some authors established stability criteria as c  , where c  is the 

critical mass of the restricted three-body problem. A series of works has been performed by 

Deprit et al. (1967). Markeev (1969), Alfriend (1970). Henrard (1970) established that in the 

vicinity of 4L , family of periodic orbits does not evolve in a continuous manner with the 

mass ratio. Nayfeh (1971) studied the problem with the help of commensurability 2:1 and 

3:1. Markeev (1973) and Sokolski (1975) also studied the stability of the Langrage solution.  

McKenzie and Szebehely (1981) defined a new criterion for the stability of the third body in 

the neighbourhood of the triangular libration points. For this, they defined maximum velocity 

and maximum displacement envelopes within which the third body remains for a long time 

starting from the suitable initial conditions, so that the third body may not cross the x axis. 

This condition of not crossing the x axis was introduced as the stability criteria for the third 

body. Tuckness (1995) investigated the sensitiveness of the third body numerically in the 

neighbourhood of 4L  by giving positional and velocity deviations from 4L  under some 

suitable initial conditions. He used Poincare’s surface of sections to compare the periodic, 

quasi-periodic and chaotic regions of the trajectories with the definitions of stability given by 

McKenzie and Szebehely (1981).  

Moreover, he also investigated the value of   (the mass ratio) ranging from zero to critical 

mass 0.038521....c  . Using the stability criteria, he determined some values of   for 

which libration points are more stable in comparison with the other values of  . Markellos et 

al. (1996) and Papadakis (1998) studied the different aspects of non-linear stability of 

Lagrangian points in the plane Circular Restricted Three-body Problem. Zsolt Sandar et al. 

(2000) discussed phase-space structure in the vicinity of triangular libration points in the 

Restricted Three-body Problem. Hassan et al. (2013) extended the work of Tuckness (1995) 

by considering the effect of oblateness of the bigger primary and showed that with the 

increase of oblateness and commensurability, the critical mass reduces and the range of 

stability decreases accordingly. Tuckness (2005) established the valid stability criteria in the 

light of Syzygies especially in the Newtonian time domain. It projects new information about 

the stable motion of the third body.   
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In the present work, we propose to extend the work of Hassan et al. (2013) in the Sun-Jupiter 

system in the Restricted Three-body problem. Stability criteria given by McKenzie and 

Szebehely (1981) and computational techniques of Tuckness (1995) and Hassan et al. (2013) 

have been considered for discussing the problem. 

 

2. Equations of Motion of the Infinitesimal Mass (Third Body) 
 

In dimensionless variables, the equations of motion of the third body, in synodic co-ordinate 

system, in the gravitational field of the Sun and Jupiter are 
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The equations in the System (1) can be reduced to a single equation 
 

 2 2 2 ,x y x y C    , 

i.e.,  

   2 2. , , 2 , 0F x y x y x y x y C      ,
                                                                       

(4)  

 

 



418   M. R. Hassan et al. 

 

where C is called Jacobi constant and   , , ,F x y x y  is called Jacobi’s manifold. 

 

3. Triangular Libration Points 
 

Since the triangular libration points are the singularities of the manifold  , , , 0,F x y x y   

hence the libration points are the solutions of the equations  
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Equation (5)   Equation (6)  1x    gives 
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Equation (5)   Equation (6)  x μ   gives 
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Finally, the triangular libration points are the solutions of the equations 

 

2 2

3 3 5

1 2 2

1 9
0 and 0

2

p I
n n

r r r

 
         .                                                                         (9) 

 

As 0 , 1p I  , hence for the first approximation 0p I   and the solutions of Equation 

(9) are given by 

 

2 2

3 3

1 2

1 1
0 and 0n n

r r
         

 

i.e., 

1 2 1r r n   . 
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This is possible only when both the primaries are of equal masses. But the masses of the Sun 

and Jupiter are not equal so 1 2r r . For better approximation we assume 0 and 0p I    , 

hence the solution of Equation (9) may be supposed to be       

           

1 21 and 1r r       ,                                                                                                (10) 

 

where ,   are distinct but very small quantities, i.e., 0 , 1.    

 

Neglecting higher order terms of ,   and coupling terms   , one can find the values of  

andx y  ; by using the Equation (10) as 
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i.e., 
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Putting the values of 1andn r   in the first equation of System (9) and neglecting the higher 

order and coupling terms, we get 
2

I
   .                                                                                                                            

Similarly, from the second equation of System (9), we get  
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Hence, the co-ordinates of triangular libration points 
4,5L  are given by 
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4. Critical Mass                                                         
 

The characteristic equation for equilateral triangular libration points can be written as  

 

   4 2 0 0 2 0 0 0 24 0xx yy xx yy xyn         ,
                                                              

(12)  
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Here 
0 0 0

xx yy xy, ,    are the values of 
xx yy xy, ,    respectively at the libration points. 

   

If 2 ,   then the reduced characteristic Equation (12) can be written as  
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For commensurability, let 2k  be the ratio of the roots of the reduced characteristic Equation 

(16). Then 
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That is, 
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The combination of the Equations (17), (18) and (19) yields 
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The roots of Equation (20) are called critical mass denoted by c and given by 
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Putting 0p  , we get 
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   [Same as Hassan et al. (2013)] 

 

 and by putting 0p I  , we get 
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.     [Same as Szebehely (1981) and Tuckness (1995)] 

 

 

5. Numerical Integration 

 

 

 
 

Figure 1. Maximum velocity and Maximum displacement Envelopes 

 

For numerical integration, let us introduce 1 2 3 4, , ,x x y x x x y x      and reducing two 

second order differential equation of motion given in Equation (1) to the four first order 

differential equations as  

 

1 2
3 4

3 4
4 3

1 2

, ,

2 , 2 ,

dx dx
x x

dt dt

dx dx
nx nx

dt x dt x


   


 

     
  

                                                                      (22) 

 

where  

 

 
  2

2 2

1 2 3

1 2 2

1 1 3
1 ,

2 2

pn I
r r

r r r

 
 

 
                                                            (23) 

 



422   M. R. Hassan et al. 

 

with 

 

 
22 2 2 2 2

1 1 2 2 1 2and 1r x x r x x       . 

 

If 1 2andp p   are the momenta corresponding to the co-ordinates  1 2,x x  of the infinitesimal 

mass, then 1 1 2 2 2 1andp x nx p x nx      .  

 

The Hamilton-Jacobi equations of motion in canonical form, are  
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with the corresponding Hamiltonian 
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To solve Equation (22) numerically, we apply Runge-Kutta method within the limits given by 

Tuckness (1995). On construction of maximum displacement and maximum velocity 

envelopes of the third body, a large initial velocity is given to the third body in the direction 

of 110o  and integrating the trajectory for a spacecraft and amount of time and checking to 

show if the third body crosses the x  axis.  

 

If the third body crosses the x axis before the time limit, the initial velocity was decreased 

by 0.00001  dimensionless time units and the whole procedure was again started and 

continued this process until a maximum velocity was found that allowed the third body to 

librate around 4L  for the full length of time limit without crossing the x axis. This 

procedure will continue for full o360  surrounding 4L . Specifying the maximum initial 

velocity allowed in a certain direction constitutes a velocity vector with magnitude and 

direction. By connecting the end points of all such velocity vectors, we will get maximum 

velocity envelope. 

 

In a similar way if the third body starts with zero initial velocity from 4L  and within specified 

amount of time, the third body will be at a displacement from 4L  along a certain direction 

without crossing the x axis and then the end point of this displacement constitutes a 

displacement vector. This procedure will continue for all o360  surrounding 4L . By 

connecting the end points, all such displacement vectors will constitute a maximum 

displacement envelope. The maximum velocity envelope and maximum displacement 

envelope are defined in the hope of showing that the third body will remain within a specified 

area around 4L  for an infinitely long period of time with given specific initial conditions.  
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6. Comparison by Poincare Surface of section 
 

In this section, the maximum velocity and maximum displacement envelopes boundary 

values are investigated using time limits of Tuckness (1995) for numerical integration and 

Poincare surface of section. The solution of the Hamiltonian equation of motion in Equation 

(24) can be represented as a trajectory in a four dimensional phase space. Because of the 

existence of the integral of motion in Equation (25), the trajectory lays a three-dimensional 

subspace  H  which is equal to a constant of the phase space. The successive intersection of 

this three-dimensional trajectory with a two dimensional surface is called Poincare surface of 

section. The intersection of 3D trajectory with the surface 
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in the positive direction is the Poincare surface of section in our case.  

 

In Figure 2, the Poincare surface of section has no clear visibility, so in Figure 3 (Enlarged 

view of Figure 2), the phase space can be divided into two regions. One region contains 

disconnected islands and the second region consists of primarily regular trajectories which 

are isolated from the islands. It means the chaotic belt of the Poincare section has been 

reduced due to the introduction of photogravitation and oblateness. The maximum velocity 

and maximum displacements were investigated using the Poincare surface of sections for 

various values of  . Initial velocities and positions from the maximum velocity and 

maximum displacement envelopes were numerically integrated using the Hamiltonian 

equations of motion and the intersection with the surface  
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were plotted for 500 to 2000 orbits for 0y   only using Runge-Kutta 7/8 integrator.  

 

Figure 3 shows the Poincare surface of section for o0.001, 108     and values of initial 

dimensionless velocities 0.420, 0.425, 0.430, 0.435, 0.440, 0.444 for the third body orbiting 

at 4L , which are the same as Hassan et al. (2013). Therefore, photo-gravitation has no effect 

on the Poincare surface of section corresponding to maximum velocity and maximum 

displacement envelopes. Using stability criteria established in this study, 0.444 is the value of 

the maximum velocity in the direction of o108 . The velocity greater than 0.444 represents 

unstable motion and velocity less than 0.444 represents quasi-periodic motion.  
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Figure 2. Surface of Poincare Section for                 Figure 3. Enlarged view of Figure 2 

               o0.001, 108      

 

Figure 4 depicts the Poincare surface of section for o0.001, 0    and the maximum initial 

displacement allowed, which can also be explored in enlarged view of Figure 4. Following 

Tuckness (1995), the maximum velocity and maximum displacement envelopes can be used 

to detect when chaotic motion of the third body is about to take place. 

 

        
 

Figure 4. Surface of Poincare Section for                 Figure 5. Enlarged view of Figure 4 

               
o0.001, 0     

 

7. Stability of the Infinitesimal Mass in the neighbourhood of L4  
 

As in Tuckness (1995), we have chosen final time 1000ft   and boundary x  axis, so size 

of the maximum velocity and maximum displacement envelopes vary according to the values 



AAM: Intern. J., Vol 12, Issue 1 (June 2017)                     425 

 

of , , and fI p t    under the defined boundary. Since the final time 1000ft   and boundary is 

the x  axis, hence they are assumed to be fixed and thus different envelopes vary according 

to , andI p   . For the Sun-Jupiter system, we take 0.001μ   as a fixed value because we 

have taken Poincare sections only for two different values of θ  i.e., for o o0 and 108θ θ     

as in Tuckness (1995) and Hassan et al. (2013). 

Following Hassan et al. (2013), we have calculated the areas of displacement envelopes and 

velocity envelopes by considering the formula 21

2
r d  with the proper limits of   for 

different envelopes. Because of the estimated area of the envelopes is a measure of stability, a 

comparison can be made on how stability varies according to the value of , andI p   . In 

Figure 6, it is visible that the area of velocity envelopes became narrower in comparison to 

the classical case (for 0I  ) with the increase of oblateness parameter I . Thus, the stability 

percentage decreases with the increase of I as in the Figure 6, the velocity envelope for 

0.01I   becomes the interior part of that for 0.1I  . In Figure 7, the displacement envelopes 

became narrower with very little effect of oblateness 0.1and 0.01I    . We have not 

confirmed that, whether 0.001I   have some significant effect or not on the displacement 

envelopes.  

 

           

 

Figure 6. Maximum velocity envelopes              Figure 7. Maximum displacement envelopes                 

                for µ = 0.001 and I = 0, 0.01, 0.1                           for µ = 0.001 and I = 0, 0.01, 0.1   

 

Figure 8 shows the position of 4L  in the common area of the velocity envelope and 

displacement envelope in unperturbed motion in the Sun-Jupiter system. Figure 9 depicts that 

the area of velocity envelopes and displacement envelopes become maximum corresponding 

to the same value of 0.0009   i.e., corresponding to this value of   motion of the third 

body is most stable which means for this value of  , the third body will librate in the 

neighbourhood of 4L  for maximum 1000ft   (non-dimensional time) without crossing the 

x  axis. Also, from this graph, we can conclude that for 0 027.  , both the area of velocity 

envelope and displacement envelopes become zero, so we can say that this value of   is for 
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the most unstable motion i.e., the third body will escape from the neighbourhood of 4L  for 

0 027.  . 

 

 

 

       
Figure 8. Maximum displacement and                   Figure 9. Area of maximum velocity and 

velocity envelopes for 0.001&0.01214             displacement in Sun-Jupiter system   

in unperturbed motion  

 

 

8. Order of Commensurability k   
 

 

Table 1. Order of Commensurability (For 0I  ) 

k


 c

   

0p   510p   410p   3.510p   310p   2.510p   210p   

1 0.995868 0.995868 0.995866 0.995562 0.995848 0.995796 0.995547 

2 0.999341 0.999341 0.999341 0.999340 0.999337 0.999319 0.999181 

3 0.999835 0.999835 0.999835 0.999835 0.999833 0.999820 0.999699 

4 0.999943 0.999943 0.999943 0.999943 0.999942 0.999930 0.999811 

5 0.999976 0.999976 0.999976 0.999975 0.999974 0.999963 0.999845 

6 0.999988 0.999988 0.999988 0.999988 0.999987 0.999975 0.999858 

7 0.999993 0.999993 0.999993 0.999993 0.999992 0.999981 0.999864 

8 0.999996 0.999996 0.999996 0.999996 0.999995 0.999984 0.999867 

9 0.999998 0.999998 0.999998 0.999997 0.999996 0.999985 0.999868 

10 0.999998 0.999998 0.999998 0.999998 0.999997 0.999986 0.999869 
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Table 2. Order of Commensurability (For 210I  ) 

k


 c

   

0p   510p   410p   3.510p   310p   2.510p   210p   

1 0.976721 0.976720 0.976717 0.976708 0.976678 0.976578 0.976181 

2 0.980016 0.980016 0.980014 0.980008 0.979988 0.979920 0.979624 

3 0.980485 0.980485 0.980483 0.980477 0.980459 0.980395 0.980114 

4 0.980587 0.980587 0.980585 0.980580 0.980562 0.980499 0.980221 

5 0.980618 0.980618 0.980616 0.980611 0.980593 0.980530 0.980253 

6 0.980630 0.980630 0.980628 0.980622 0.980605 0.980542 0.980265 

7 0.980635 0.980635 0.980633 0.980628 0.980610 0.980547 0.980271 

8 0.980638 0.980638 0.980635 0.980630 0.980613 0.980550 0.980273 

9 0.980639 0.980639 0.980637 0.980631 0.980614 0.980551 0.980275 

10 0.980640 0.980640 0.980638 0.980632 0.980615 0.980552 0.980276 

 

 

In the Table 1, critical mass c  has been calculated for 5 4.5 4 20,10 ,10 ,10 .....10p      keeping 

0I  . It is seen in the table that c  varies from 0.995868 to 0.995547 for 1k   i.e.,  c  

decreases with the increase of p . Similarly in every row of the Table 1, c  decreases with 

the increase of p  for 2,3,4.....10k   i.e., c  increases with the increase of commensurability 

k . In each column of the Table 1, c  increases with the increase of p  from 20 to10  .  

 

In Figure 10, graphs show the variation of c  with 2.5 20,10  and 10p    corresponding to 

each value of 1,2,3.....10k  . It is seen that c  increases rapidly from  1,2,3k   whereas c  

increases very slowly for 4,5,6.....10k  . That is, c  runs almost through a horizontal 

straight line after 3k  . Similar case happened in graphs of Figure 11 and Figure 12 for 
2 110 and 10 ,I I      respectively with a visible difference, which can be seen in Figure 11. 

In Figure 13 the graphs of c  versus p  for 2 10,10 and10I      are drawn from the first row 

of Tables 1, 2 and 3. It is seen that c  is almost constant for all values of and 1p k   . 

Similarly other graphs can be seen for 2,3,4.....10k  . All graphs almost will be horizontal 

lines. Therefore, photogravitation has insignificant effect on c  for commensurability 

1,2,3.....10k  . In Figure 14, for the fixed values of 510p  , the graphs of versusc I     for 

1,2,3.....10k   and for all values of ,c I , are almost same, in which c  decreases when I  

increases.   
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Table 3. Order of Commensurability (For 110I  ) 

k


 c

   

0p   510p   410p   3.510p   310p   2.510p   210p   

1 0.846665 0.846663 0.846650 0.846619 0.846519 0.846199 0.845131 

2 0.848863 0.848862 0.848849 0.848820 0.848725 0.848420 0.847404 

3 0.849176 0.849175 0.849163 0.849133 0.849039 0.848737 0.847728 

4 0.849245 0.849243 0.849231 0.849201 0.849108 0.848806 0.847799 

5 0.849265 0.849264 0.849252 0.849222 0.849128 0.848826 0.847820 

6 0.849273 0.849272 0.849259 0.849230 0.849136 0.848834 0.847828 

7 0.849277 0.849275 0.849263 0.849233 0.849140 0.848838 0.847832 

8 0.849278 0.849277 0.849265 0.849235 0.849141 0.848839 0.847833 

9 0.849279 0.849278 0.849266 0.849236 0.849142 0.848840 0.847834 

10 0.849280 0.849278 0.849266 0.849237 0.849143 0.848841 0.847835 

  

Table 4. Combined Effect of andp I   on Critical Mass c   

k
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1
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2

0.5

10 ,

10

p
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1 0.995868 0.993896 0.989675 0.976708 0.939133 0.846199 0.682322 

2 0.999341 0.997351 0.993092 0.980008 0.942104 0.848420 0.683466 

3 0.999835 0.997843 0.993578 0.980477 0.942527 0.848737 0.683629 

4 0.999943 0.997895 0.993684 0.980580 0.942619 0.848806 0.683664 

5 0.999976 0.997982 0.993716 0.980611 0.942647 0.848826 0.683675 

6 0.999988 0.997995 0.993728 0.980622 0.942658 0.848834 0.683679 

7 0.999993 0.998000 0.993734 0.980628 0.942662 0.848838 0.683681 

8 0.999996 0.998003 0.993736 0.980636 0.942665 0.848839 0.683682 

9 0.999998 0.998004 0.993738 0.980631 0.942666 0.848840 0.683682 

10 0.999998 0.998005 0.993739 0.980632 0.942666 0.848841 0.683683 

  

 

In Table 4, critical mass has been calculated by the formulae given in Equation (21) when 

both of andp I   are allowed to vary. For    5 3 4 2.510 , 10 , 10 , 10p I p I      

       3.5 2 3 1.5 2.5 1 3.5 210 , 10 , 10 , 10 , 10 , 10 and 10 , 10p I p I p I p I                 , c  has been 

calculated for 1,2,3.....10k   and graphs were plotted in Figure 15. In this figure, all pairs of 

andp I   represent almost the same graph with a slight difference. With the increase of both 

the parameter andp I   together, c  decreases. Thus, by the reduction of critical mass c , 

stability range of the triangular libration points is reduced according to the criterion under 

consideration.  
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Figure 10. Plotting of c  vs. k  for 0I             Figure 11. Plotting of c  vs. k  for 210I           

       

     
 

Figure 12. Plotting c  vs. k  for 110I           Figure 13. Plotting c vs. p   for 1k      

                       

      
 

Figure 14. Plotting c  vs. I  for 510p             Figure 15. Combined Effect of andp I   on c  
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9. Conclusion 

 
The present study aims to check the joint effect of solar radiation of the Sun and oblateness of 

the Jupiter on the stability of the triangular libration points 4 5,L  in the Sun-Jupiter system. In 

sections 2, 3 and 4 of the present work, all mathematical derivations are given, which are 

required to discuss the stability of the triangular libration points. In section 5, for numerical 

integration we have applied fourth-order Runge-Kutta method with a seventh-order automatic 

step-size control in the FORTRAN programming for solving the four first-order differential 

equations of the system (22).  

 

In section 6, with the techniques given by Tuckness (1995), we have produced data of 

1 2 1 2x ,x ,x ,x ,C , then within the time limit of Tuckness, Poincare surface of section are plotted  

in Figures 3, 4 and 5. In classical case of Tuckness (1995), the regions of motion in Poincare 

surface of section can be divided into three regions. In the first region, all trajectories are 

regular and periodic, in the second region trajectories are quazi-periodic and in the third 

region chaotic belt is seen in which islands are scattered throughout the region of motions but 

in our case, there is a significant change in the chaotic region for both the case of 
o0  108,   . In the chaotic region of our Poincare surface of section, the scattered islands 

have been significantly reduced. Thus, the chaotic belt has been reduced due to the 

introduction of the photogravitation of the Sun and oblateness of Jupiter.  

 

In section 7, we have compared the stability criterion of the third body in the vicinity of the 

triangular libration points with that of the classical case given by Tuckness (1995). In Figure 

6, the area of velocity envelopes is maximum for 0I   but for 0 01I . , the area of velocity 

envelopes has been reduced and for 0 1I . , the area of velocity envelopes is further reduced; 

i.e., by increasing the oblateness parameter I , the area of velocity envelopes decreases. In 

other words, we can say that due to oblateness of Jupiter, the percentage of stability of 

triangular libration points reduced; i.e., oblateness of the Jupiter has a significant effect on the 

stability of triangular libration points of the Sun-Jupiter system but no significant effect of 

photogravitation is seen in the area of velocity envelopes. As far as the area of displacement 

envelopes is concerned, no effect of photogravitation and oblateness is found, which is 

visible in Figure 7 and 8; i.e., due to photogravitation of the Sun and oblateness of the Jupiter, 

the area of the displacement envelopes is not reduced.  

 

From all the sections discussed above and the graphs drawn in Figures 10, 11, 12, 13, 14 and 

15, we conclude that a great effect of oblateness and a very little effect of photogravitation 

have reduced the range of stability of the triangular libration points in comparison of the 

classical case.  
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