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Abstract  

 

This paper is concerned with the study of propagation of Stoneley waves at the interface of 

two dissimilar transversely isotropic thermoelastic solids without energy dissipation and with 

two temperatures. The secular equation of Stoneley waves is derived in the form of the 

determinant by using appropriate boundary conditions i.e. the stresses components, the 

displacement components, and temperature at the boundary surface between the two media 

are considered to be  continuous at all times and positions . The dispersion curves giving the 

Stoneley wave velocity and Attenuation coefficients with wave number are computed 

numerically. Numerical simulated results are depicted graphically to show the effect of two 

temperature and anisotropy on resulting quantities. Copper material has been chosen for the 
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medium    and magnesium for the medium     Some special cases are also deduced from 

the present investigation.  

 

Keywords: Transversely isotropic; Stoneley wave; Two temperatures; Secular equation; 

Stoneley wave velocity; Attenuation Coefficient; isotropic 
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1. Introduction 

  
The exact number of the layers beneath the earth's surface is not known. One has, therefore, to 

consider various appropriate models for the purpose of theoretical investigations. These models 

not only provide better information about the internal composition of the earth but are also 

helpful in exploration of valuable materials beneath the earth surface. 
 

Mathematical modeling of surface wave propagation along with the free boundary of an elastic 

half-space or along the interface between two dissimilar elastic half-spaces has been subject of 

continued interest for many years. These waves are well known in the study of geophysics, ocean 

acoustics, SAW devices and non-destructive evaluation. Stoneley (1924) studied the existence of 

waves, which are similar to surface waves and propagating along the plane interface between 

two distinct elastic solid half-spaces in perfect contact. Stoneley waves can also propagate on 

interfaces either two elastic media or a solid medium and a liquid medium. Stoneley (1924) 

derived the dispersion equation for the propagation of Stoneley waves. Tajuddin (1995) 

investigated the existence of Stoneley waves at an interface between two micropolar elastic half 

spaces. 

Chen and Gurtin (1968) , Chen et al. (1968)  and Chen et al. (1969) have formulated a theory of 

heat conduction in deformable bodies which depends upon two distinct temperatures, the 

conductive temperature   and the thermodynamical temperature T. For time independent 

situations, the difference between these two temperatures is proportional to the heat supply, and 

in absence of heat supply, the two temperatures are identical. For time dependent problems, the 

two temperatures are different, regardless of the presence of heat supply. The two temperatures 

T,   and   the strain are found to have representations in the form of a travelling wave plus a 

response, which occurs instantaneously throughout the body (Boley and Tolins (1962) ).The 

wave propagation in two temperature theory of thermoelasticity was investigated by Warren and 

Chen (1973). 

A comprehensive work has been done in thermoelasticity theory with and without energy 

dissipation and thermoelasticity with two temperature. Youssef  (2006), constructed a new theory 

of generalized thermoelasticity by taking into account two-temperature generalized 

thermoelasticity theory for a homogeneous and isotropic body without energy dissipation. 

Youssef et al. (2007) investigated State space approach of two temperature generalized 

thermoelasticity of infinite body with a spherical cavity subjected to different types of thermal 

loading. Quintanilla (2002) investigated thermoelasticity without energy dissipation of materials 

with microstructure. Several researchers studied various problems involving two temperature e.g. 
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(Youssef and AI-Lehaibi (2007); Youssef (2011); Youssef (2013); Kumar, Sharma and Garg 

(2014); Kaushal et al.(2013);  Kaushal et al. (2010);  Ezzat and Awad (2010);  Sharma and Marin 

(2013);  Sharma and Bhargav (2014);  Sharma et al. (2013);  Sharma and Kumar (2013)). 

 

Green and Naghdi (1991) postulated a new concept in thermoelasticity theories and proposed 

three models which are subsequently referred to as GN-I, II, and III models. The linearized 

version of model-I corresponds to classical thermoelastic model (based on Fourier's law). The 

linearised version of model-II and III permit propagation of thermal waves at finite speed. 

Green-Naghdi's second model (GN-II), in particular exhibits a feature that is not present in other 

established thermoelastic models as it does not sustain dissipation of thermal energy (1993). In 

this model the constitutive equations are derived by starting with the reduced energy equation 

and by including the thermal displacement gradient among other constitutive variables.  

 

Green-Naghdi's third model (1992) admits dissipation of energy. In this model the constitutive 

equations are derived by starting with the reduced energy equation, where the thermal 

displacement gradient in addition to the temperature gradient, are among the constitutive 

variables.  

 

Kumar and Chawla (2009) discussed the wave propagation at the imperfect boundary between 

transversely isotropic thermoelastic diffusive half-spaces and an isotropic elastic layer. Kumar et 

al. (2013) studied the reflection and transmission of plane waves at the interface between a 

microstretch thermoelastic diffusion solid half-space and elastic solid half-space. Recently 

influence of new parameters on surface waves has been investigated by many researchers 

(Ahmed and Abo-Dahab (2012); Abo-Dahab (2015); Abd-Alla et al. (2015); Marin (1995, 1998, 

2010))  

 

Keeping in view of these applications, dispersion equation for Stoneley waves at the interface of 

two dissimilar transversely isotropic thermoelastic mediums with two temperature and without 

energy dissipation have been derived. Numerical computations are performed for a particular 

model to study the variation of phase velocity and attenuation coefficient with respect to wave 

number. The results in this paper should prove useful in the field of material science, designers 

of new materials as well as for those working on the development of theory of elasticity. 

2. Basic equations  

Following Youssef  (2006), the constitutive relations and field equations in the absence of body 

forces and heat sources are: 

 

                  ,                                                                                                           (1) 

                      ̈  ,                                                                                                     (2) 

  
               ̈      ̈  ,                                                                                                (3) 

 

where   

 

             ,                                                                                                                  (4) 

             ,                                                                                                                       (5) 
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(         )           .                                                                                           (6) 

 

Here,                                 are elastic parameters,      is the thermal tensor,   is 

the temperature,    is the reference temperature,    are the components of stress tensor,     are 

the components of strain tensor,   are the displacement components,   is the density,    is the 

specific heat,   
   is the materialistic constant,     are the two temperature parameters,     is the 

coefficient of linear thermal expansion. 

 

3. Formulation of the problem 
 

We consider a homogeneous, transversely isotropic thermoelastic half-space    overlying 

another homogeneous, transversely isotropic thermoelastic  half-space    connecting at the 

interface     .  We take  origin of co-ordinate system (           on      .We choose 

        in the direction of wave propagation in such a way that all the particles on a line 

parallel to    axis are equally displaced, so that  the field component      and        and    

are independent of   . Medium     occupies the region          and the medium      

occupies the region      . The plane      represents the interface between the two 

media    and    . We define all the quantities without bar for the medium    and with bar for 

medium   . We have used appropriate transformations following Slaughter (2002) on the set of 

Equations (1) - (3) to derive the equations for transversely isotropic thermoelastic solid with two 

temperature and without energy dissipation and we restrict our analysis to the two dimensional 

problem with  

 
    ⃗           ,                                                                                                                   (7) 

 

Equations (1) - (3) with the aid of (7) take the form 
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In the above equations we use the contracting subscript notations                   
              to relate              

 

The initial and regularity conditions are given by 

                  ̇           

                  ̇           

                ̇            for                   .                                     (11)      

                                      ,  for                                     (12) 

 

To facilitate the solution, following dimensionless quantities are introduced: 
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where   
  

   

 
   and    is a constant of dimension of length. 

 

Using the dimensionless quantities defined by (13) into (8) - (10) and after that suppressing the 

primes we obtain 
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4. Solution of the problem 

 
We assume the solution of the form 

 

              
    

                                                                                               (17)     
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where   is the wave number,      is the angular frequency  and c is the phase velocity of the 

wave Using (17) in Equations (14) - (16) and satisfying the radiation condition          
            we obtain the values of         for the medium     
Substitute in (14) - (16) 
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These equations have nontrivial solutions if the determinant of the coefficient (  
    

    ) 

vanishes, which yield the following characteristic equation   
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For the medium    
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For the medium    

 

We attach bars for the medium    and write the appropriate values  ̅   ̅   ̅  for the medium 

                                                 
 

  ̅   ̅   ̅  ∑   ̅̅̅
     

    ̅    ̅  
 ̅               ,                                                             (25) 

 

where   ̅    ̅   ̅̅ ̅   ̅̅ ̅   ̅̅ ̅    ̅̅ ̅̅     ̅̅ ̅̅̅  are obtained from equations (23) and (24) by attaching bar to all 

the quantities. 

 

5. Boundary conditions  

We assume that the half spaces are in perfect contact. Thus, there is continuity of components of 

displacement vector, normal stress vector, tangential stress vector, temperatures and temperature 

change at the interface 

 

i)       ̅̅ ̅̅   ,             at                                                                                                  (26)         

ii)       ̅̅ ̅̅  ,            at                                                                                                   (27)                                                                                                                                                                                                        

iii)    ̅ ,              at                                                                                                   (28)                                                                                                                                                                                                          

iv)    ̅ ,             at                                                                                                    (29)                                                                                                                                                                                                   

v)    ̅ ,              at                                                                                                    (30)                                                                                                                                                                                                      

vi)  
   

   
   

 ̅̅ ̅   ̅

   
 ,      at                                                                                              (31)    

 

In case the half spaces are not in perfect contact i.e.,  the interface between the half -spaces is 

frictionless, then tangential stress is absent and the tangential displacement is discontinuous.     

                                                                                                                                                                               

6. Derivation of secular equations 

Making use of Equations (14) and (15) for medium    and corresponding equations with bar  for 

medium    in Equations (26)-(31)  along with (22) and (25) we obtain a system of six 

simultaneous homogeneous  secular equations 
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̅   

 
̅  can be obtained from  

 
 and  

 
 by attaching bar to all the quantities. The system of 

Equations (32) has a non-trivial solution  if the determinant of unknowns   ,   ̅, j=123 vanishes 

i.e., 

 

  |   |   
  . 

 

7. Particular cases 

 
(i) If        , from Equations (26) - (31), we obtain the corresponding expressions for 

displacements, and stresses and conductive temperature for transversely isotropic 

thermoelastic solid without two temperature and without energy dissipation. 

 

(ii) If we take             ,           ,       ,      =   ,        , 

        in Equations (26) -( 31), we obtain the corresponding expressions for 

displacements, and stresses and conductive temperature in isotropic thermoelastic solid with 

two temperature and without energy dissipation. 
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8. Numerical results and discussion  
 

Following Youssef (2006), Copper material is chosen for the purpose of numerical calculation 

for the medium   which is transversely isotropic 

 

                      ,                 ,         
 ,           

             ,                      ,                      ,      
                                                         ,    
           ,                 ,                 

                     , 

  
                     ,                                 

            ,with non-dimensional parameter L=1. 

 

Following Dhaliwal and Singh (1980), magnesium material has been taken for the medium    , 

as  

 

   ̅̅ ̅̅                    ̅̅ ̅̅               ,    ̅̅ ̅̅               ,    ̅̅ ̅̅  
                  ,   ̅̅ ̅̅                  ̅               ,   ̅       , 

  
̅̅ ̅                    ,   

̅̅ ̅                   ,  

  
̅̅ ̅                   ,   

 ̅̅ ̅                     , 

  
 ̅̅ ̅                      ,    ̅̅ ̅̅   ̅  ̅

 ,   ̅̅ ̅          ̅̅ ̅        , with non-

dimensional parameter L=1 

  

For particular case (ii): For the medium   , we take numerical data  from Youssef (2006) and 

take Copper material with values of constants as 

 

               ,    
  

    

 
,               ,                   

  

  
                          ,                               

                293K,                       
                     ,   

                 , with non-dimensional parameter L=1.  

 

For the medium   , we consider  Magnesium material with numerical data from Dhaliwal and 

Singh (1980) 

 

 ̅              , ̅                ,   
 ̅̅ ̅    

 ̅̅ ̅   ̅                     ,  

 ̅   ̅   ̅               ,   
̅̅ ̅    

̅̅ ̅ =  ̅                      ̅       

           ̅   298K,   
̅̅ ̅                    ,   

  
    

 
,   ̅̅ ̅         ̅̅ ̅  

     ,                   ,with non-dimensional parameter L=1.  

 

Mathcad software has been used for numerical computation of the resulting quantities. The 

values of determinant of secular equations, Stoneley wave velocity and attenuation coefficients 

with respect to frequency    have been computed and are depicted graphically in Figures 1 - 9.  
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i) Figures 1- 3 correspond to the variations in determinant of secular equations with respect to the 

wave number   subject to two temperature, without two temperatures (i.e. particular case (i)), 

and isotropic material (particular case (ii)) respectively. 

ii) Figures 4, 5 and 6 correspond to the variations in velocity of Stoneley wave  with respect to 

the wave number   subject to two temperatures, without two temperatures (i.e. particular case 

(i)), and isotropic material (particular case (ii)), respectively. 

iii) Figures 7, 8 and 9 correspond to the variations in Attenuation coefficient with respect to the 

wave number   subject to two temperatures, without two temperature (i.e. particular case(i)), and 

isotropic material (particular case (ii)), respectively. 

Determinant of secular equations 

Important phenomena are noticed in all the physical quantities. It is evident from Figure 1, that 

initially, variation in the determinant  of secular equations  is steady state with respect to wave 

number, but near    =0.7, it results in sudden variations  similar to Dirac delta function and when 

it is away from   0.8, again variations in |   | are negligible. Without two temperature, the 

resulting variations are very close to the two temperature case as can be examined from Figure 2. 

The difference noticed is of magnitude and of small variations for the range           and 

0.9    ,as without two temperature, these variations are not present. In Figure 3, for the 

range 0     , variations are zero but away from this range, variations result in small jolt 

waves followed by large jolt waves and these variations  are similar to seismic waves used for 

earthquake measures.  

Stoneley wave velocity  

Figure 4,  exhibits variation of Stoneley wave velocity with respect to   when a1=0.03,a3=0.06. 

Here for the range 0      , small variations are noticed whereas away from this range 

variations increase and reach to maximum for the range .7      . For     , first we notice a 

small increase in Stoneley wave velocity above  boundary surface; afterwards there is a decrease  

below  boundary surface and then variations remain stationary in the small interval followed by a 

sharp decrease with high amplitude below  boundary surface and are  similar to negation of 

Heaviside function Figure 5 represents variations of Stoneley waves velocity with respect to 

wave number    when a1=0,a3=0 (particular case(i)). Here variations are similar to Figure 4 with 

change in magnitude of amplitudes. Figure 6 exhibits variation of Stoneley wave velocity with 

respect to   corresponding to particular case (ii). For the range 0      , small variations are 

observed but afterwards, variations occur with high frequency. Variations in Stoneley wave 

velocity for      are similar to seismic waves with amplitude increasing monotonically. 

Attenuation coefficient   

Figure 7 depicts the variations in Attenuation coefficient with respect to wave number    It is 

noticed that values of  Attenuation coefficient  are zero for the range 0     . and for      
  , values lie below boundary surface  in the form of small jolt wave  followed by high jolt wave 
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in downwards direction. For the range .8      , small variations are noticed whereas   for  

.95    , we notice high momentary increase. Figure 8 represents variations in Attenuation 

coefficient with respect to   corresponding to particular case (i). Here small variations above 

boundary surface are noticed  for the range 0      whereas variations lie below  boundary 

surface in the rest. Figure 9 represents variations in Attenuation coefficient  with respect to   

corresponding to particular case (ii). We notice that  values are zero  for the range  0       
whereas instant increases above boundary surface are noticed in the rest except for the range 

.9       as here, the variations are similar to negation of Dirac delta function. 

 

 
Figure 1. Variation of determinant of secular equation |   | respect to   when a1=0.03,a3=0.06 

 

 
 

Figure 2. Variation of determinant of secular equation |   | with respect to   for particular case 

(i) 
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Figure 3.  Variation of determinant of secular equation |   | with respect to   for isotropic, particular 

case (ii)   

 

                             

Figure 4 .Variation of stoneley waves velocity with respect to    when a1=0.03,a3=0.06 
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Figure 5. Variation of stoneley waves velocity with respect to   when a1=0 =a3.  

                             
 

Figure 4 .Variation of Stoneley waves velocity with respect to
 
   when a1=0.03,a3=0.06. 

 

                                                     
 

Figure 5. Variation of Stoneley waves velocity with respect to   when a1=0 =a3  

 

𝜉 

St
o

n
el

ey
 w

av
es

  v
el

o
ci

ty
 

St
o

n
el

ey
 w

av
es

  v
el

o
ci

ty
 

𝜉 

St
o

n
el

ey
 w

av
es

  v
el

o
ci

ty
 

𝜉 



332                                                                                                                                            Rajneesh Kumar
 
et al. 

 

                                                   
 

Figure 6. Variation of Stoneley waves velocity with respect to   for isotropic, particular case (ii) 

 

                                                         
 

Figure 7. Variation of attenuation coefficient of Stoneley waves with respect to   when a1 = 

0.03, a3 = 0.06. 
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Figure 8. Variation of attenuation coefficient of Stoneley waves with respect to   when a1=0=a3 

 

                                          
Figure 9 .Variation of attenuation coefficient of Stoneley waves with respect  to     

                 for isotropic, particular  case (ii) 

 

9. Conclusion  

In this work, the influence of two temperature and anisotropy on determinant of secular 

equations of Stoneley waves, Stoneley wave velocity, attenuation coefficient is studied. We 

observed  the following significant facts which reflect the  influence of these parameters  on the 

physical quantities. 

1.  Anisotropy has a great effect on the various quantities. As in isotropic case variations are 

moving just similar to seismic waves. 
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2.  It is found that, the two temperature theory of thermoelasticity and theory of 

thermoelasticity produce close results with difference in magnitudes of variations. 

3. Variations are more pronounced for higher values of wave number initially for small values 

of wave number; variations are very small for all the quantities.  

4.  The present theoretical results may provide interesting information for experimental 

scientists/ researchers/seismologist working on this subject. 
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