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Abstract 
 

In this paper, we study briefly the role played by the locally uniformly rotund (LUR) norm and 

Frechet differentiability of a norm on the Banach space theory. Our old outstanding open 
Problem 3.8 mentioned below is the main object of this paper. We study nearly about it and find 

some additional assumptions on the space attached with this problem to obtain its positive or 

negative answer. We investigate different results related to these norms and their duals on 

different settings. In particular, we introduce reflexive spaces, Banach spaces with unconditional 

basis, weakly locally uniformly rotund (WLUR) norm, Almost locally uniformly rotund (ALUR) 

norm, strongly exposed point, sub-differentiability and ϵ-sub-differentiability, σ–slicely 

continuity, weakly compactly generated (WCG) Banach spaces with c
k
 –smooth norms, 

Symulian’s Theorem, and some technical lemmas. 

 

Keywords: Locally uniformly rotund (LUR); Equivalent norms; Renorming ; Weakly locally 

uniformly rotund (WLUR); Almost locally uniformly rotund(ALUR) 

Unconditional basis; Day's norm; Symulian’s Theorem 
 

MSC 2010 No.:   49J50, 46B20   

 

 

 

Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 12, Issue 1 (June  2017),  pp. 275 - 290 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

https://mg.mail.yahoo.com/neo/b/compose?to=gajrajgautam@yahoo.com
https://mg.mail.yahoo.com/neo/b/compose?to=pmbajracharya13@gmail.com
http://pvamu.edu/aam


276   Gautam et al. 

 

 

 

 1. Introduction  
 

The notion of locally uniform rotund (LUR) norm was introduced by Lovaglia, A. R. (1955) and 

he generalized uniform convexity, localized this notion and then introduced LUR norm of a 

Banach space. He showed, as a straightforward consequence of a Theorem ‘‘ The norm of a 

Banach space is Frechet differentiable if the dual norm is LUR’’ which is mentioned in Asadi 

and Haghshenas (2012) and proved by Deville et al. (1983). The converse does not hold, even up 

to renormings. Asadi and Haghshenas (2012) showed that there exists a Banach space X with a 

Frechet differentiable norm, which does not admit any equivalent norm with a strictly convex 

dual norm. However, Smith and Troyanski (2008) mentioned that in the class of spaces with 

unconditional bases, we do have equivalence up to a renorming. Many efforts have been 

dedicated in the renorming theory to obtain sufficient conditions for a Banach space to admit an 

equivalent LUR norm.  Molto et al. (2009) stated the first characterization of existence of LUR 

renormings. The spaces with this property are at the core of renorming theory in Banach spaces 

and consequently have been extensively studied, see for example, Deville et al. (1993). It is well 

known that the spaces with a LUR norm have the Kadec property. As is now evident, the notion 

of LUR is of fundamental importance for renorming theory and we refer to Deville et al. (1993) 

and the more recent Malto et al. (2009) for extensive results. 

    

Differentiability of convex continuous functions has been studied extensively during the recent 

fifty years. Among all functions in this class, the norm function is of the great importance and 

deserves to be studied in more detail, since the geometric structure of the space is highly related 

to it. Asadi et al. (2009); Haghshenas, H. (2011) introduced Frechet differentiability of a norm. 

In this paper, we emphasize this norm and use Smulian’s Theorem to prove some geometric 

results in connection with LUR norm. Examples of spaces that admit Frechet differentiable norm 

are spaces with separable dual, reflexive spaces, C(K) space with        = ϕ, C0 (Γ) for arbitrary 

Γ, and C ([0, α ]) for arbitrary ordinal α.  In 1969, a proof published under the name Rainwater 

computed the local uniform convexity of Day’s norm. This norm has been the only known 

locally uniformly rotund norm on c0 (Γ) and this renormability remains a standard tool for further 

renorming Theorems. For example, the basic technique for finding a strictly convex norm for a 

Banach space is to exhibit a continuous linear injection into a c0 (Γ). Also, the local uniform 

rotundity of c0 (Γ) is used in Trojonski’s conjecture settling proof for the existence of uniformly 

rotund norms for reflexive spaces. It was shown by Molto et al. (2009) that a Banach space X 

with a Frechet differentiable norm which has Gateaux differentiable dual norm, admits an 

equivalent LUR norm. It is proved in Troyanski, S. (1968) that ‘‘If a Banach space X has  

unconditional basis, then  X admits an equivalent LUR norm’’. 

 

Combination of the Frechet differentiability and the LUR property:  In many situations one 

is interested in obtaining a new norm on a given space X which shares good smoothness and 

rotundity properties. A classical result in this direction is a method generally known as Asplund 

averaging: A Banach space X which admits a LUR norm ||⋅ ||1   and a norm ||⋅||2 the dual norm of 

which is LUR, admits also a norm ||⋅||3 which is LUR and whose dual norm is LUR too. In 

particular, ||⋅ ||3 is LUR and Frechet differentiable simultaneously. The Asplund averaging took a 
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surprising twist with the recent deep result of Haydon, R. (2008), ‘‘If X admits a norm the dual 

of which is LUR, then it admits also an LUR norm’’. 

 

Some Notations and Terminologies  
 

In the sequel, (X, ||⋅ ||) is the real Banach space with norm ||⋅||; S(X) is the unit sphere in X;    (X*, 

||⋅||*) is the dual space of X; S(X*) is the unit sphere of X*; B(X) is the unit ball of X; B(X*) is the 

unit ball of X*. LUR, ALUR. WLUR, FD, WCG, and lsc are the short forms of locally uniformly 

rotund, weakly locally uniform rotund, Frechet differentiable, weakly compactly generated and 

lower- semi-continuity respectively. All undefined terms and notation are standard and can be 

found, for example, in Fabian et al. (2001) ; Molto et al. (2009). 
 

2. Some Definitions  
 

Definition 2.1. Deville et al. (1993). 

 

The space X (or the norm ||.|| on X) is said to be locally uniformly convex (in short LUR) if  

   ∀   (x n ) ⊆ S(X ), x ∈ S( X ), limn→ ∞ || x n || = || x || = ||(x n + x) /2|| 

                                                 =1 ⇒ lim n → ∞ x n = x.                                                                       
 

Equivalently,    

 

                      limn→∞ (2||x||
2
 + 2|| x n ||

2
 − ||x + x n ||

2
) = 0  

                                                   ⇒ limn→∞|| x – x n || = 0, for all (x n ) ⊆ X , x ∈ X. 

 

Definition 2.2.  Deville et al. (1993); Fabian et al. (2001).  

 

A norm ||.|| on X is said to be Frechet differentiable at x ∈ S(X) if there exists F ∈ S(X*) such that 

for every h ∈ S(X),  

 

                                           limh→ 0 | 
||     ||  || ||        

|| ||
 | = 0, 

 

where F(x) is called Frechet derivative of the norm function ||⋅|| at x and F(x, h) is called the 

Frechet differential of ||⋅ || at x in the direction h. If the norm of X is Frechet differentiable at each 

x ∈ S(X), then we say that X is Frechet differentiable.                   

 

Definition 2.3.  

 

Let a linear space X be equipped with two norms ||⋅ ||1 and ||⋅ ||2. Then these two norms on a 

common space X are equivalent if there are two positive real numbers a and b such that  

                                                ∀ x∈ X,   a||x||1 ≤ ||x||2   ≤ b||x||1. 
 

Definition 2.4.  Johnson et al.  (2003). 
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Renorming of Banach space consists of replacing the given norm, which is usually provided by 

the very definition of the space, by another norm which may have better (or sometimes worse) 

geometric properties of Convexity or smoothness, or both. 

 

3. Some Results 

 

Theorem 3.1. Deville et al. (1993); Haghshenas,H. (2011); Fabian et al. (2001). 

 

Suppose that ||.|| is a norm on a Banach space X with dual norm ||.||
* and x∈ S(X).                  

Then, the following are equivalent: 

(i) ||⋅ || is Frechet differentiable at x. 

(ii) ∀ (f n   ), ( g n ) ⊆   S(X*)                  ⇒   ||fn- g n||*→ 0. 

(iii) ∀ {     ⊆ S(X*)           ⇒ ∃ f ∈ S(X*): f n → f. 

As a consequence of Smulian's Theorem we obtain the following result. 

 

Theorem 3.2. Deville et al. (1993); Asadi et al. (2009).  

  

If X* is LUR, then the norm function is Frechet differentiable on X. 

 

Proof: 

 

Let x ∈  S(X), (f n) ⊆ S(X*). Then there is f ∈  S(X*) such that f(x) = 1, limn→∞   fn (x) = 1.  

 

It follows that   

                                     2 ≥ || f n + f || ≥ ( fn + f ) (x) → 2 as n → ∞ 

 

                                                              ⇒ || fn + f ||→ 2. 

 

So,                                    

                                                                lim n →∞ (2||fn|| 
2
 + 2||f|| 

2
 − ||fn + f || 

2 
) = 0.

 

 

Since X* is locally uniformly convex, lim n→∞ || f n – f || = 0, then by Smulian’s Theorem ||⋅ || is 

Frechet differentiable at x ∈ S(X). □   
 

Theorem 3.3: Fabian et al. (2001); Haydon, R.  (2008); Orihuela, J.  (2007).   

 

 If X* has a dual LUR norm then X admits an equivalent LUR norm. 

 

Theorem 3.4. Wulbert, D. (1986). 

 

The norm ||⋅|| on C0 (Γ ) is Frechet differentiable. 
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Proof:  

 

Theorem 3.3 showed that if the dual space X* has a dual LUR norm, then X admits an equivalent 

LUR norm. But the dual norm ||⋅|| on C0 (Γ )* is LUR. So by Theorem 3.2 the Theorem 3.4 is 

proved.   

 

Example 3.5. Lin, P.K. (2004).  

 

The ℓ1 space has an equivalent LUR norm. 

 

Since C0 (Γ)* = ℓ1, Example 3.5 implies Theorem 3.4 and thus, Theorem 3.3 is true. 

 

Theorem 3.7. Wulbert, D.  (1986, p. 69).  

 

The norm ||⋅ || on C0 (Γ) is LUR. 

 

Proof:   

 

After defining Day's norm on C0 (Γ), it is proved in (Deville et al. (1993), pp.69-71).  

 

We are now face with the following problem which is raised in Asadi and Haghshenas (2012); 

Orihuela, J. (2007). 

 

Problem  3.8. 

 

Assume X admits an equivalent Frechet differentiable norm. Does X admit an equivalent LUR 

norm ?  

 

This problem has been solved with additional conditions on X. 

 

Theorem 3.9. Fabian et al. (2001, p. 272).  

 

Let the norm ||⋅ || on a Banach space X be Frechet differentiable. If the dual norm ||⋅||* on X* is 

Frechet differentiable, then ||⋅ || and ||⋅ ||* are both LUR.  

 

Proof: 

 

Let (x n) ⊆ S(X) and x∈ S(X). Assume that || (x n + x) /2|| → 1. We have to show that || x n - x|| 

→ 0.  Let fn be the Frechet derivative of the norm || ⋅ || at (x n + x) /2  and f  be the Frechet 

derivative of the norm ||⋅||  at  x,  i. e.,  fn = ||(x n + x) /2 ||'  and  f = ||x||'  respectively. Since   f n 

and f are Frechet differentiable, then they are linear and bounded. Frechet derivative of a 

function f  at  x∈ X  is 

 

                                                 ||x||'h =lim h→ 0   
||     ||   || || 

|| ||
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so here, 

                                       

                                                   f (x) =||x|| ' x = lim x→ 0    
||     ||   || ||

|| ||
 = 1. 

Thus, 

 

                                                  |f (x)| =| lim x→ 0   
||     ||   || ||

|| ||
  | 

           ≤ lim x→ 0 ||x + x – x|| / ||x|| 

                                                                                             = 1 

 

Therefore,     

                                                                     | f (x) | ≤ 1 and || f || ≤ 1. 

 

But,    

                                                          ||f || = sup {| f (x)|: for all f ∈ X*} 

                                                       

                                                           ⇒ || f || ≥ |f(x)| ≥ f(x) = 1. 

 

 It follows that          

                           

                                                        1 ≥ || f || ≥ 1⇒ || f || = 1. 

 

 So,            

                                                

                                                               f ∈ S(X*), f(x) = 1.  

Similarly, we get            

                        

                                                    f n ∈ S(X*), f n (x n+ x) = ||x n+ x||. 

 

We claim that       

                     

                                                 limn f n (x n ) = 1, lim n→∞   fn (x) = 1. 

 

 

Suppose that limn inf (fn(x)) < 1. Then for some 0 < α < 1 and some sub sequence    
 of  the 

sequence  ( f n  )  such that  

 

                                                            lim n inf    
< α for all  k . 

 

Then,   

                                                               
 (x + x n ) =    

 x) +    
(    

 ) < 1 + α < 2,  

 

a contradiction with 

                                                              
(x +    

) = ||x +    
|| → 2.  
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Similarly, a contradiction is obtained with  

                                

                                                               fn (x n) → 1. 

 

Therefore, 

 

lim n inf  fn (x n ) = 1, 

 

since for all n,                   

                 

                                                        |fn(x)| ≤ || fn || || x || = 1,  lim n f n (x) = 1. 

 

As ||⋅|| is Frechet differentiable, so by Symulian Theorem, 

                                            

          ||fn– f ||* → 0,   | ( f n – f ) (x n )| ≤ || fn – f || || x n || →  0. 

 

                          ⇒ f (x n ) = fn (x n ) + (f - fn ) (x n ) → 1.  

 

Since ||⋅||* is Frechet differentiable so by Symulian Theorem ||x n - x||→ 0. Thus, the norm || ⋅ || 
is LUR.  

 

Proof of second part:  
 

As the dual norm ||⋅ ||* is Frechet differentiable, X is reflexive and the norm function is convex 

and lower-semi continuous (lsc), so we have ||⋅ ||** = ||⋅ || for all x ∈ X. By proof of first part of 

this Theorem, ||⋅ || * is LUC. But the dual norm || ⋅ || * is LUR implies ||⋅ || is LUR by Theorem  

3.3. So || ⋅ ||* is also LUC. □  
   

Theorem 3.10. Molto et al. (2009) 

 

Let the norm ||⋅ || on a Banach space X be Frechet differentiable. If it has Gateaux differentiable 

dual norm, then X admits an equivalent LUR norm. 

 

Theorem 3. 11.  Borwein and Vanderwerff ( 2010, compare to remark 5.1.3, Ex.5.1.17, p, 225 )  

  

 Suppose X is a reflexive Banach space. Then a norm ||.|| on X is Frechet differentiable and LUR 

if and only if its dual norm is Frechet differentiable and LUR.  

  

 Proof: 

 

Suppose the dual norm to ||.|| is Frechet differentiable and locally uniformly convex. Then we 

have to show ||.|| on X is LUR and Frechet differentiable. Suppose x n ,  x ∈  S(X)  are such that     

|| x n + x || → 2.  Choose f ∈  S(X *) so that f (x) = 1 and fn∈  S(X *) so that  

                                       

                                                   f n (x n + x ) = ||x n + x||. 
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Then,                                         

                                               f (x n   ) → 1,   (∵f n ( x n ) ≤ | fn(x n ) | ≤ ||fn|| || x n ||→ 1 ) 

Similarly,      

 

                                               f n (x ) ≤ | f n (x) | ≤ ||fn|| ||x||→ 1. 

 

As the dual norm is Frechet differentiable at f  and  f(x) = 1, Smulian’s Theorem implies x n → x. 
So by definition, the norm ||⋅|| is LUR. Again, as dual norm is LUR .That is, 

                       

       f, fn ∈ S(X*), ||fn + f ||→ 2 ⇒ || fn - f ||→ 0. 

 

So for 

                                    

                                             fn∈ S(X*), f (x n  ) → 1 

                                        ⇒   2 ≥ ||fn+ f || ≥ (fn + f ) (x) ≥ 2. 

                                       ⇒   || fn + f ||→ 2. 

 

Then,    

                             

                                       || f n - f ||→ 0. (∵by assumption) 

 

Therefore, by definition the norm ||.|| is Frechet differentiable by Smulian’s Theorem. □  

 

 4. Unconditional Basis  
 

The existence of a Schauder basis in a Banach space does not give very much information on the 

structure of the space.  If one wants to study in more detail the structure of a Banach space by 

using bases one is led to consider bases with various special properties. Undoubtedly, the most 

useful and widely studied special class of bases is that of unconditional bases. A basis (x n) of a 

Banach space X is said to be unconditional if for every x ∈ X, its expansion in terms of the basis  
∑       

 
    converges unconditionally. It is defined in Lindenstrauss and Tzafriri (1977). For 

example natural basis in lp , 1 ≤ p < ∞ and C0 is unconditional basis. In the spaces C [0, 1] and 

L1[0,1] there is no unconditional basis . Recall that a basis of X is unconditional if and only if it 

remains a basis under any rearrangement of the sequence basis in X. With the aid of this type of 

basis to a Banach space X, we get a positive answer to the Problem 3.8 which is stated as 

follows. 

 

Lemma 4.1. Deville et al. (1993, pp. 68, 69); Diestel (1975, p. 95) 

 

Let (s k) (k∈  ℕ), (t k ) ( k∈  ℕ ) be two non-increasing sequences of non-negative numbers such 

that s k = t k = 0 for all large k ∈  ℕ. Let π:  ℕ → ℕ be an injective surjection (permutation of 

natural numbers).  

 

Then, 
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∑      
 
           ≥ 0 

and for all K∈ℕ either                  

                                                     π {1, ⋯, K} = {1, ⋯, K} 
 

 or ,                                                 

                                                        (s K   -  s K+1)(t K  -  t K+1) ≤ ∑      
 
          . 

 

 Lemma 4.2.  Deville et al. (1993). 

 

Let Γ be an infinite set, let u ∈ l∞ (Γ), ϵ > 0, and assume that the set 

 

                                                   {γ ∈ Γ : | u(Γ ) | > ϵ } < ∞ . 

 

 Let u n ∈ l∞ (Γ ), n ∈ ℕ, be such that  

                                                        

                                          2|| || 
 +2||  || 

   
   

- ||    || 
   

→ 0 as n → ∞. 

 

 Then,                                 

                                           lim sup n→ ∞ || u – u n || ∞ ≤  3ϵ. 

 

 Using Lemma 4.1, Lemma 4.2 the above Theorem is proved in elaborate form due to Rainwater 

and found in Diestel (1975, pp. 94-100). So it is not necessary to give its proof. If u ∈ c0 (Γ) in 

the Lemma 4.2, Day's norm ||⋅ ||D is LUR at u. Thus, we get a well known result that this norm on 

c0 (Γ) is LUR. 

 

Theorem  4.3. Smith and Troyanski (2008).  

 

Let X have an unconditional basis. Then X admits an equivalent norm with LUR dual norm 

whenever X admits an equivalent Frechet smooth norm. (This result has been known since the 

1960’s). 

 

Proof: 

Let X have an unconditional basis and X admits an equivalent Frechet smooth norm. We have to 

show that X admits an equivalent norm with LUR dual norm. Let ||·|| be the original norm on X 

and (e γ) γ ∈ Γ an unconditional basis with conjugate system (f γ) γ ∈ Γ. By a renorming, we may 

assume that (e γ) γ ∈ Γ is 1-unconditional with respect to ||·||.  

 

By lemma 4.2   Day’s norm ||·||Day on ℓ∞ (Γ) can be seen in Deville et al. (1993, Def., II.7.2, 22) 

and the fact that ||·||Day norm is LUR when restricted to c0(Γ), it is proved in  Deville et al. ( 1993, 

Theorem II.7.3) ; Haydon, R.  (2008). 

 

Define T: X → c0 (Γ) by  
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(T x)(γ) = f(x) for x ∈  X and γ ∈  Γ,  

and set 

                                         

                                                 ||| x |||
2
 = || T x ||

2
Day + ∑ 2

-n
 || x ||

2
n ,  

 

where                                       

                                                ||x||
2
 n   = sup { ||∑γ ∈ Γ –A   f γ ( x ) e γ ||  

                                                                      + 2∑ γ ∈ A | f γ (x)|: A∈ Γ and card A ≤ n}. 

 

Then, |||·||| is LUR. It is proof is compared in Deville et al. (1993, pp. 69-71). 

    

 Indeed, Troyanski, S. (1968), proved that ‘‘If X has an unconditional basis then X admits an 

equivalent LUR norm’’. Let X have a 1-unconditional basis (e γ) γ∈  Γ with conjugate system       

(f γ )γ∈  Γ If X admits an equivalent Frechet smooth norm then it cannot contain an isomorphic 

copy of ℓ1, for ℓ1 admits no such norm  Deville et al. (1993, Corollary II.3.3). Hence (e γ ) γ∈  Γ   is 

shrinking Lindenstrauss and Tzafriri (1977, Theorem 1.c .9), and it follows that the conjugate 

system (f γ ) γ ∈ Γ is an unconditional basis of X*. Now it is a straightforward matter to verify that 

the LUR norm |||·||| defined above, but on X*, |||·||| is w*-lower semi continuous and thus, the 

dual of an equivalent norm on X   Fabian et al.  (2001, Theorem 8.8). □  

 

5. Weakly Locally Uniform Rotund (WLUR) Norm 
    

Here in Problem 3.8 WLUR condition is added because on one hand, it gives the positive answer 

to the former problem. On the other hand it is used to construct LUR norm |||⋅ |||| on the space 

whose dual is a Vasak space Deville et al. (1993, chap. VII, Theorem 2.7 p.276), in particular, 

|||⋅||| is Frechet differentiable .We say the space X (or the norm ||.|| on X) is said to be weakly 

locally uniformly convex (in short WLUR) if, for all (x n  ) ⊆ S(X), x ∈ S(X),  

                                         

                                         lim n→ ∞ || x n || = || x || = ||(x n + x) / 2|| =1  

                                   ⇒ lim n→ ∞ x n = x  in weak topology of X . 

 

Theorem 5.1. Malto et al. (1999). 

 

A weakly locally uniform rotund (WLUR) norm on Banach space has an equivalent LUR norm. 

 

Theorem 5. 2.  Malto et al.(1999). 

  

A Banach space X with a WLUR and Frechet differentiable norm must be LUR renormable. 

 

This theorem is proved in Deville et al. (1993, Chap. VII, Proposition 2.6, pp. 276-278 ). 

  

6. Almost Locally Uniform Rotund (ALUR) Norm 

 

Definition 6. 1.  Aizpurlt and Garcia-Pacheco (2005) 
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We say that a norm ||⋅|| on a Banach space X is almost locally uniformly rotund (ALUR) if for 

every pair of sequences                                           

                              

                             (x n ) n∈ ℕ   in S (X) , (fm) m∈ ℕ  in S (X*)  such that 

 

lim m ( lim n (fm((x n+ x)/2))) = 1 ⇒ (x n  ) n∈ ℕ   converges to  x . 

 

Remarks 6.2. 

 

We have implication LUR⇒ ALUR⇒ R (rotund)  
  

Remarks 6 .3. 

 

If x∈ S(X) is a strongly exposed point and a smooth point of B(X), then it is an  almost locally 

uniformly rotund point of B(X) . 

 
Theorem 6.4.  Aizpurlt and Garcia-Pacheco  (2005). 

 

 Let X be a Banach space and let x ∈ S(X). If x is a strongly exposed point of B(X) and a strongly 

smooth point of B(X), then it is a locally uniformly rotund point of B(X). 

 

Theorem  6.5.  Aizpurlt and Garcia-Pacheco (2005)  

 

Let X be a Banach space. Then X is locally uniformly rotund if it is almost locally uniformly 

rotund and its norm is Frechet differentiable in S(X). 
 

 Proof: 
 

Assume that a Banach space X is ALUR and its norm is Frechet differentiable. We have to show 

that X is LUR. Let x ∈ S(X).Then x is strongly exposed point of B(X) because ''x is an almost 

locally uniformly rotund point of B(X) if and only if it is a strongly exposed point of B(X) for 

each f ∈ S(X*) such that f (x) = 1''. Further as the norm of X is Frechet differentiable at x it is 

strongly smooth point of B(X). Thus, by Theorem 6.4 norm of X is LUR. □  

 

The converse of Theorem 3.2 is not true in general, since there are spaces with Frechet 

differentiable norm which admits no dual LUR norm. However, the following theorem shows the 

converse is true.  

 

Theorem 6.7. 

 

If x∈ X and ||x||=1 all points of S(X) is strongly exposed point of B(X) and norm ||⋅ || is Frechet 

differentiable at x∈ S(X) so that f ∈ S(X*) where f(x) = ||x||. Then the dual norm ||⋅ || * is LUR.  

 

Proof: 
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Assume that all point x∈ S(X) is strongly exposed point of B(X) and norm ||⋅ || of X is Frechet 

differentiable at x∈ S(X). Let us to show dual norm ||⋅ || * is LUR. Let f n in B(X*) such that         

|| f n + f ||→ 2.We have to show || fn - f ||→ 0. Choose xn in B(X) such that                                    

                                           

                                                                (fn + f) (x n) → 2. 

 

 It follows that 

                 2 ≥ || fn +f || ≥ ( f n + f) (x n) → 2  

                                                          ⇒ ||f n + f|| →2 

 

Moreover,  

                                                              f (x n) → 1 = f(x). 

 

 So, 

|| x n - x || → 0, 

 

since x∈ S(X) is strongly exposed by f in B(X). Now combining this with the fact that 

 

f n (x n) → 1 ⇒  f n (x) → 1. 

 

But ||⋅|| is Frechet differentiable so by Symulian’s Theorem we have,  

                                 

|| f n - f ||* → 0. 

 

Thus, the dual norm ||⋅ ||* is LUR. □ 

 

Thus, Theorem 6.7 together with Theorem 3.3, gives the positive answer to the Problem 3.8.  

 

7. Sub-differentiability and ϵ -sub differentiability 

                          

Definition 7.1. Borwein et al. (2010).  

 

Let X be a Banach space. The Fenchel conjugate of the function f :X → [-∞,+∞ ] is the function 

f* : X* →  [-∞, +∞ ] defined by 
                             

f*(x*) := sup x∈  X {x *(x) - f(x)}. 

 

The function f* is convex. Its conjugate is called bi-conjugate and it is denoted by f** and it is a 

function on X**.  If it is finite then we say that f is co-finite.  

 

Definition 7. 2. 

 

Let f  be a continuous convex function defined on a Banach space X. Then sub differential of the 

function f at x ∈ X is the set 
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∂f(x) = {x* ∈ X*: x*(y - x) ≤ f(y) - f(x) for all x ∈ X}. 

We write 

 

                                   ∂f (X) = ∪  x∈  X   ∂f (x). 

 

The sub-differentiable of the mapping ∂||⋅ || of some norm: X→ 2 
B(X*)   is defined by  

  

                         ∂||x || = {x*∈ X* : < x*, x > = ||x||, <x*, z> ≤ ||z|| for all z∈ X }. 

 

We remark that the norm ||⋅ || is Gateaux differentiable at x if ∂||x ||= {x*}.  In this case we say 

that  x* is Gateaux derivative of the norm ||⋅ || at x and this equivalent to 

  

                                               
||    || || ||

 
            for all y∈ X.  

 

Definition 7. 3. 

 

Let f : X→ (-∞, +∞)  be lower semi continuous function , ϵ > 0, x0 ∈  𝒟  (f) . Then f is said to be 

ϵ - sub differential at x0 if 

 

                         ∂ϵ f (x0) = {ϕ  ∈   X* : ϕ (x) - ϕ (x0) ≤  f(x) - f(x0) + ϵ  for all x ∈   X}. 

 

Remark 7.4. 

                          (i) x0  ∉ dom f ⇒ ∂ϵ f(x0) =ϕ 

  (ii) Let f  be lower semi continuous and ϵ > 0 be given. Then, ∂ϵ f(x0) ≠ ϕ. 

 

7.1. Some Results  
 

Symulian Lemma   Deville et al. (1993, p. 347).  

 

Let  f  be a continuous convex function on a Banach space X. Then the following are equivalent:  

 

               (i) f  is Frechet differential at x0 ,  

              (ii) ||ϕ n - ϕ || → 0 if ϕ ∈∂f(x0) ϕ n ∈     f(x0), ϵn ↓ 0.  

 

Theorem 7.1.1.  Borwein et al. (2010, p .171). 

 

  Let f :X →  (-∞ ,+∞ ), x ∈ X,  x* ∈  X*  and ϵ  > 0.  Then,  

 

x*∈ ∂f(x),  f(x) + f*(x*) ≤  x*(x) + ϵ  . 

 

Theorem 7.1.2.   Borwein et al (2010, Theorem 4.4.5). 

 

 Let f :X →  (-∞ ,+∞ ),  x0 ∈  𝒟  (f ) . Then  
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       (a)  If ϕ ∈ ∂f(x0) then x0 ∈ ∂ f*(ϕ).The converse is true if f is convex and lsc at x0. 

       (b)  If ϕ ∈ ∂ϵ f(x0) then a point x0 ∈ ∂ f *(ϕ). The converse is true if f is convex and lsc at x0. 

 

Theorem 7. 1.3. Borwein et al. (2010, pp. 171-225). 

 

 Suppose X is a reflexive Banach space and f: X → (-∞,+∞)  is lsc proper function . Let f is 

continuous co -finite and f and f* are both Frechet differentiable. Then f and f* are both locally 

uniform convex (LUR). 

 

 8. Some typical Results  
 

It is shown in Malto et al. (2009); Orihuela, J. (2007)  that for a Banach space X with a Frechet 

differentiable norm which has Gateaux differentiable dual norm the duality map δ  provides a σ -

slicely continuous and co-σ -continuous map between the unit spheres of X and the dual space 

X*, and therefore X admits an equivalent locally uniformly rotund norm. It seems to be possible 

that the requirement on the dual norm could be relaxed by looking for σ -continuous maps from 

the dual space X* into X such that the composition with the duality map would provide enough σ 

-slicely continuous maps from X into X to approximate the identity map, and to finally get the 

LUR renormability of the space X itself. So we propose to study the following. 

  

Question 8.1. Orihuela, J. (2007). 

 

 Let X be a Banach space with a Frechet differentiable norm. Is it possible to construct a 

sequence of σ -continuous maps for the norm topologies ϕ p : X* → X such that the sequence      

{ϕ p o δ  : p ∈  ℕ } will provide a way to approximate the identity map on the unit sphere of X ? 

For instance, in such a way that: 

 

0 ∈  (   –   )
 
          ∈   ℕ  

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ σ (X, X*)
  for all  x ∈ S(X). 

 

A place to begin to look for the sequence (ϕ p o δ) could be modifications of the Toruncyck 

homeomorphism between the dual X* and X for every Asplund space X since the density 

characters of X and X* coincide. If so, the Banach space will be LUR renormable and we will 

have a positive answer to the above open Problem 3.8   Molto et al. (2009)   . 

 

Remark 8.2.  Godefroy et al. (1993);  Fabian et al. (1983). 

 

Recall that X need not be WCG if X* is WCG. Further, even if X is WCG and admits a              

C
k
 - smooth norm (Note that here, C

k 
- smoothness is in the Frechet sense) we cannot ensure 

that such a norm also can be made LUR. 
 

Theorem 8.3.  Yost, D. (1981)  

 

Let X be a reflexive Banach space. Then a space X can be renormed so that X* has Frechet 

differentiable norm, but X is not locally uniformly convex.  
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Remark 8.4. Wulbert, D. (1986)  

 

An equivalent norm |||⋅ ||| on C0 (Γ) is LUR and Frechet smooth. 

 

Theorem 8.5.  Zizler, V. (1984) 

 

Suppose that X is a Banach space which admits a real valued continuously Frechet differentiable 

function with bounded non-empty support. Then a space X* admits an equivalent locally 

uniformly rotund norm.  

 

9. Conclusion 
 

In this paper, we introduce and study the concept of LUR norm and Frechet derivative of a norm 

on a Banach space X. The open Problem 3.8 is seen side by side to get its solution and more 

observation is done in different settings. Thus, we summarize exactly the above open problem. In 

my research work no examples and no results have found the question has right or wrong 

answer. Though on observing Theorems 3.9, 3.10, 3.11, Theorem 4.3 together with Theorem 3.3, 

Theorems 5.1, 5.2, 6.5, 7. 1. 4, Theorem 6.7 together with Theorem 3.3, Question 8.1, and some 

typical results in Theorems 8.3, 8.5 and Remark 8.4 above, the Problem 3.8 has the positive 

answer. Further, Remark 8.2 gives negative answer. But the general case still remains open. 

These types of additional conditions to the above problem opens gate to the researchers to make 

fertile field in the garden of the renorming theory.  
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