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Abstract

In this paper, a numerical method is developed to approximate the soliton solutions of some
nonlinear wave equations in terms of the Jacobi polynomials. Wave are very important phenomena
in dispersion, dissipation, diffusion, reaction, and convection. Using the wave variable converts
these nonlinear equations to the nonlinear ODE equations. Then, the operational Collocation
method based on Jacobi polynomials as bases is applied to approximate the solution of ODE
equation resulted. In addition, the intervals of the solution will be extended using an rational
exponential approximation (REA). The KdV, Boussinesq, and Kaup–Kuperschmidt equations are
studied as the test examples. Finally, numerical computation of the conservation values shows
the effectiveness and stability of the proposed method.
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1. Introduction

Nonlinear evolution equations are widely used as models to describe complex physical phenomena
in various fields of sciences, especially in fluid mechanics, solid state physics, plasma physics,
plasma waves, and biology. For this reason, finding the exact or approximate solutions of these
equations is very important. One of the basic physical problems for these models is to obtain their
traveling solutions. In recent years, a variety of effective analytical and semi analytical methods
have been been used for nonlinear PDEs, such as tanh–coth method (cf. Wazwaz (2007), Wazwaz
(2008a), Wazwaz (2008b)), Exp–function method (cf. Ravi et al. (2017), Ekici et al. (2017)), Dai
et al. (2009), Hirota bilinear method (cf. Wazwaz (2010), Wazwaz (2008c), Wazwaz (2008d)),
G′/G−expansion method (cf. Manafian et al. (2017), Mohyud–Din and Bibi (2017), Kabir et al.
(2011), Ekici (2017), Shehata (2010), Zheng et al. (2015)), Adomian decomposition method (cf.
Achouri et al. (2009)), Variational iteration method (cf. Lu (2011)), Differential transform method
(cf. Mohamed and Gepreel (2017), Yu et al. (2016), Yang et al. (2016)), and many others. The
specific cases of the Jacobi polynomials have been applied to solve the nonlinear equations. For
example, Bhrawy et al. have presented a new Legendre spectral collocation method for fractional
Burgers equations (cf. Behrawy et al. (2015)). In Doha (2014), the authors used Jacobi–Gauss–
Lobatto collocation method for the numerical solution of (1+1)− nonlinear Schrödinger equation.
Also, Bhrawy (2014) has presented an pseudospectral approximation based on Jacobi polynomials
for generalized Zakharov system. Two spectral tau algorithms based on Jacobi polynomials have
been applied to solve multi–term time–space fractional partial differential equations and time
fractional diffusion–Wave equations (cf. Bhrawy et al. (2014), Bhrawy and Zaky (2015)).

In this current paper, we try to handle the Jacobi polynomials in a different way for achieving more
desirable results. Since the existing analytical methods are restricted for obtaining exact solutions
of nonlinear wave equations, we interested in the numerical solution of this kind of nonlinear
problems. The numerical methods are of great importance for approximating the solutions of
nonlinear PDEs, especially when the nonlinear differential equation under consideration faces
difficulties in obtaining its exact solution. In this case, we usually use an appropriate and efficient
numerical method. The aim of this paper is to use the wave variable and convert the nonlinear
PDE to the corresponding nonlinear ODE. The resulting ODE will be solved by operational Jacobi
Collocation method. For this purpose, integral operational matrices based on Jacobi polynomials
will be constructed. Thus, the principle nonlinear equation is transformed by a system of nonlinear
algebraic equations which is solved by well known Newton iteration method and determined
unknown coefficients. It should be mentioned that the (N + 1) roots of Jacobi polynomials
P

(α,β)
N+1 (x) are considered as the collocation nodes. Since the approximate solutions are in the

form of polynomials, they are unable to express the soliton nature of the exact solutions. For
this reason, the approximate solution obtained will be improved using a rational exponential
approximation (REA). Consequently, the improved solutions coincide with the soliton solutions
and the interval of convergence is extended. The proposed scheme is applied for special cases
of KdV, Boussinesq, and Kaup–Kuperschmidt equations as follows Wazwaz (2009):

i) KdV equation:
ut − 6uux + uxxx = 0, (1)
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ii) Boussinesq equation:
utt − uxx − 3(u2)xx − uxxxx = 0, (2)

iii) Kaup–Kuperschmidt equation:

ut − uxxxxx + 20uuxxx + 50uxuxx − 80u2 = 0. (3)

The remainder of this paper is organized as follows: The Jacobi polynomials, some of their
properties, and the operational matrices of integration and product are introduced in Section
2. Afterwards, Section 3 is devoted to describe the proposed scheme. The proposed method for
solving the nonlinear wave equations will be applied in Section 4. For this purpose, the Equations
(1)–(3) are considered as the illustrative examples. A conclusion is presented in Section 5.

2. Jacobi polynomials and their operational matrices

The well–known Jacobi polynomials are defined on the interval [−1, 1], constitute an orthogonal
system with respect to the weight function w(α,β)(x) = (1−x)α (1 +x)β , and can be determined
with the following recurrence formula:

P
(α,β)
i+ 1 (x) = A(α, β, i) P

(α,β)
i (x) + x B(α, β, i) P

(α,β)
i (z)

−D(α, β, i) P
(α,β)
i− 1 (x), i = 1, 2, ...,

(4)

where

A(α, β, i) =
(2 i+ α + β + 1)(α2 − β2)

2(i+ 1)(i+ α + β + 1)(2 i+ α + β)
,

B(α, β, i) =
(2 i+ α + β + 2)(2 i+ α + β + 1)

2(i+ 1)(i+ α + β + 1)
,

D(α, β, i) =
(i+ α)(i+ β)(2 i+ α + β + 2)

(i+ 1)(i+ α + β + 1)(2 i+ α + β)
,

and
P

(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

α + β + 2

2
x+

α− β
2

.

The orthogonality condition of Jacobi polynomials is∫ 1

−1
P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx = hk δjk,

where

hk =
2α+β+1Γ(k + α + 1)Γ(k + β + 1)

(2k + α + β + 1)k! Γ(k + α + β + 1)
.

The analytic form of Jacobi polynomials is given by Szego (1939),

P
(α,β)
i (x) =

i∑
k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α + β + 1)

Γ(k + β + 1)Γ(i+ α + β + 1) (i− k)! k!

(
1 + x

2

)k
,

i = 0, 1, ... .

(5)
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A continuous function u(x), square integrable in [−1, 1], can be expressed in terms of the Jacobi
polynomials as,

u(x) =
∞∑
j=0

Cj P
(α,β)
j (x), (6)

where the coefficients Cj are given by

Cj =
1

θj

∫ 1

−1
u(x) P

(α,β)
j (x) w(α,β)(x) dx, j = 0, 1, ... .

In practice, only the first (N + 1) terms the Jacobi polynomials are considered. Therefore, one
has

uN(x) =
N∑
j=0

Cj P
(α,β)
j (x) = ΦT (x) C = CT Φ(x), (7)

where the vectors C and Φ(x) are given by

C = [C0, C1, ..., CN ]T , Φ(x) = [P
(α,β)
0 (x), P

(α,β)
1 (x), ..., P

(α,β)
N (x)]T . (8)

Some other properties of the Jacobi polynomials are presented as follows:

(1) P
(α,β)

i (0) = (−1)i
Γ(i+ β + 1)

Γ(i+ α + β + 1)

i∑
k=0

(−1)k Γ(i+ k + α + β + 1)

Γ(k + β + 1) k! (i− k)! 2k
,

(2)
di

dxi
P (α,β)
n (x) =

Γ(n+ α + β + i+ 1)

2i Γ(n+ α + β + 1)
P

(α+i, β+i)
n−i (x).

Lemma 1.

The Jacobi polynomial P (α,β)
i (x) can be obtained in the form of:

P
(α,β)
i (x) =

i∑
k=0

γ
(i)
k xk,

where γ(i)k are

γ
(i)
k = (−1)i−k

(
i+ k + α + β

k

)
Γ(i+ β + 1)

2k Γ(i+ k + α + β + 1)

×
i−k∑
l=0

(−1)l Γ(i+ k + l + α + β + 1)

2l Γ(l + k + β + 1) l! (i− k − l)!
.

Proof:

The coefficients γ(i)k can be obtained as:

γ
(i)
k =

1

k!

dk

dxk
P

(α,β)
i (x)

∣∣∣∣
x=0

.

Now, by using properties (1) and (2) the lemma can be proved. �
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Lemma 2.

If P (α,β)
j (x) and P (α,β)

k (x) are j−th and k−th shifted Jacobi polynomials, respectively, then the
product of P (α,β)

j (x) and P (α,β)
k (x) can be written as

Q
(α,β)
j+k (x) =

j+k∑
r=0

λ(j,k)r xr. (9)

Proof:

Defining the Q(α,β)
j+k (x) = P

(α,β)
j (x) P

(α,β)
k (x), as a polynomial of degree j + k, leads to:

Q
(α,β)
j+k (x) =

( j∑
m=0

γ(j)m xm
) ( k∑

n=0

γ(k)n xn
)

=

j+k∑
r=0

λ(j,k)r xr.

The relation between coefficients λ(j,k)n with coefficients γ(j)m and γ(k)m will be as follows:

If j ≥ k :
r = 0, 1, ..., j + k,

if r > j then

λ
(j,k)
r =

∑k
l=r−j γ

(j)
r−l γ

(k)
l ,

else

r1 = min{r, k},
λ
(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

end.

If j < k :
r = 0, 1, ..., j + k,

if r ≤ j then

r1 = min{r, j},
λ
(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

else

r2 = min{r, k},
λ
(j,k)
r =

∑r2
l=r−j γ

(j)
r−l γ

(k)
l ,

end.

where the coefficients γ(n)m are defined by Lemma 1. Thus, the coefficients λ(j,k)r is determined.
�

Lemma 3.

Q
(α,β)
j+k (x) can be expanded as follows:

Q
(α,β)
j+k (x) =

j+k∑
l=0

Λ
(j,k)
l (x+ 1)l, (10)
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where Λ
(j,k)
i are obtained from the following relations,

Λ
(j,k)
j+k = λ

(j,k)
j+k ,

Λ
(j,k)
l = λ

(j,k)
l −

j+k∑
m=l+1

(
m

l

)
Λ(j,k)
m , l = j + k − 1, j + k − 2, ..., 1, 0,

(11)

where λ(j,k)l have been introduced by Lemma 2.

Proof:

The (x+ 1)l can be written as:

(x+ 1)l =
l∑

m=0

(
l

m

)
xm.

The goal is to obtain the Λ
(j,k)
l in terms of the λ(j,k)l . To this end, we rewrite Equation (10) as

follows:

Q
(α,β)
j+k (x) =

j+k∑
l=0

l∑
m=0

Λ
(j,k)
l

(
l

m

)
xm. (12)

The coefficient of xr in Equation (12) will be as:
j+k∑
m=r

(
m

r

)
Λ(j,k)
m . (13)

By using Equation (13), we rewrite Equation (12) as follows:

Q
(α,β)
j+k (x) =

j+k∑
l=0

{ j+k∑
m=l

(
m

l

)
Λ(j,k)
m

}
xl.

According to Lemma 2, we have

λ
(j,k)
l =

j+k∑
m=l

(
m

l

)
Λ(j,k)
m , l = 0, 1, ..., j + k. (14)

Solving the upper triangular system (14) as backwards leads to determine the unknown coef-
ficients, Λ

(j,k)
l . Consequently, the desired result is achieved and we can use the Equation (10)

instead the Equation (9). �

Lemma 4.

If l ≥ 0, then we have∫ 1

−1
(x+ 1)l P

(α,β)
i (x) w(α,β)(x) dx =

i∑
k=0

{
(−1)i−k 2l+α+β+1 Γ(i+ β + 1)

Γ(k + β + 1) Γ(i+ α + β + 1)

× Γ(i+ k + α + β + 1) Γ(l + k + β + 1) Γ(α + 1)

k! (i− k)! Γ(l + k + α + β + 2)

}
.
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Proof:

Using the Equation (5) and definition of weight function, we have

∫ 1

−1
(x+ 1)l P

(α,β)
i (x) w(α,β)(x) dx =

i∑
k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1)

2k Γ(k + β + 1) Γ(i+ α + β + 1) k! (i− k)!

×
∫ 1

−1
(x+ 1)l+k+β (1− x)α dx

=
i∑

k=0

(−1)i−k 2l+α+β+1 Γ(i+ β + 1) Γ(i+ k + α + β + 1)

Γ(k + β + 1) Γ(i+ α + β + 1) k! (i− k)!

×
∫ 1

0

tl+k+β (1− t)α dt

=
i∑

k=0

(−1)i−k 2l+α+β+1 Γ(i+ β + 1) Γ(i+ k + α + β + 1)

Γ(k + β + 1) Γ(i+ α + β + 1) k! (i− k)!

×B(l + k + β + 1, α + 1),

where B(s, t) is the Beta function and defined as:

B(s, t) =

∫ 1

0

vs−1(1− v)t−1dv =
Γ(s) Γ(t)

Γ(s+ t)
. �

Lemma 5.

If P (α,β)
i (x), P (α,β)

j (x), and P
(α,β)
k (x) are i−th, j−th, and k−th shifted Jacobi polynomials,

respectively, then the following relation is established,

qijk =

∫ 1

−1
P

(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx

=

j+k∑
l=0

{ i∑
m=0

(−1)i−mΛ
(j,k)
l 2l+α+β+1 Γ(l +m+ β + 1)

Γ(m+ β + 1) Γ(i+ α + β + 1)

× Γ(i+ β + 1) Γ(i+m+ α + β + 1) Γ(α + 1)

Γ(l +m+ α + β + 2) (i−m)! m!

}
,

where Λ
(j,k)
l were introduced in Lemma 3.

Proof:

Assume P (α,β)
j (x) P

(α,β)
k (x) = Q

(α,β)
j+k (x). Using Equation (5), Lemmas 3 and 4 leads to:
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∫ 1

−1
P

(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx =

∫ 1

−1
P

(α,β)
i (x) Q

(α,β)
j+k (x) w(α,β)(x) dx

=

j+k∑
l=0

Λ
(j,k)
l

∫ 1

−1
(x+ 1)l P

(α,β)
i (x) w(α,β)(x) dx

=

j+k∑
l=0

{ i∑
m=0

(−1)i−mΛ
(j,k)
l 2l+α+β+1 Γ(l +m+ β + 1)

Γ(m+ β + 1) Γ(i+ α + β + 1)

× Γ(i+ β + 1) Γ(i+m+ α + β + 1) Γ(α + 1)

Γ(l +m+ α + β + 2) (i−m)! m!

}
.

Thus, desirable result is obtained. �

In performing arithmetic and other operations on the Jacobi bases, we frequently encounter the
integration of the vector Φ(x) defined by Equation (8) which is called the operational matrix
of the integration. Hence, the matrix relations must be obtained. In this section, this operational
matrix will be derived. To this end, some useful lemmas and theorems are stated.

Theorem 6.

Let Φ(x) be the Jacobi vector in Equation (8). Then,∫ x

0

Φ(t) dt 'M Φ(x),

where M is the (N + 1)× (N + 1) operational matrix of the integration and is defined by:

M =


Ω(0, 0) Ω(0, 1) . . . Ω(0, N)

Ω(1, 0) Ω(1, 1) . . . Ω(1, N)
...

... . . . ...
Ω(N, 0) Ω(N, 1) . . . Ω(N,N)

 ,
where

Ω(i, 0) = ωi0k + θi, i = 0, 1, ..., N, k = 0, 1, ..., i, (15)

Ω(i, j) =
i∑

k=0

ωijk, i = 0, 1, ..., N, j = 1, 2, ..., N, (16)

and θi and ωijk are given by

θi =
(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1)

Γ(k + β + 1) Γ(i+ α + β + 1) (k + 1)! (i− k)! 2k
,

ωijk =
(−1)i−k 2α+β+2 Γ(j + β + 1) Γ(i+ β + 1) Γ(i+ k + α + β + 1) Γ(α + 1)

hj Γ(k + β + 1) Γ(j + α + β + 1) Γ(i+ α + β + 1)(k + 1)! (i− k)!

×
j∑
l=0

(−1)j−l Γ(j + l + α + β + 1) Γ(l + k + β + 2)

Γ(l + β + 1) Γ(l + k + α + β + 3) l! (j − l)!
,

i, j = 0, 1, ..., N, k = 0, 1, ..., i.
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Proof:

Integration of the analytical form of P (α,β)
i (x), i.e. Equation (5), from 0 to x leads to:∫ x

0

P
(α,β)
i (t) dt =

i∑
k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1) (x+ 1)k+1

2k Γ(k + β + 1) Γ(i+ α + β + 1) (k + 1)! (i− k)!

+
i∑

k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1)

2k Γ(k + β + 1) Γ(i+ α + β + 1) (k + 1)! (i− k)!
.

Now, one can approximate (x+ 1)k+1 in terms of shifted Jacobi polynomials as:

(x+ 1)k+1 =
N∑
j=0

ak,j P
(α,β)
j (x),

where

ak,j =
1

hj

∫ 1

−1
(x+ 1)k+1 P

(α,β)
j (x) w(α,β)(x) dx.

But according to Lemma 4 one has,∫ 1

−1
(x+ 1)k+1 P

(α,β)
j (x) w(α,β)(x) dx =

j∑
l=0

{
(−1)(j−l) 2k+α+β+2 Γ(j + l + α + β + 1)

Γ(l + β + 1) Γ(j + α + β + 1)

× Γ(j + β + 1) Γ(k + l + β + 2) Γ(α + 1)

Γ(k + l + α + β + 3) l! (j − l)!

}
.

Therefore, Equation (15) will be as follows:∫ x

0

P
(α,β)
i (t) dt =

i∑
k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α + β + 1)

2k Γ(k + β + 1) Γ(i+ α + β + 1) (k + 1)! (i− k)!

+
N∑
j=0

{ i∑
k=0

(−1)i−k 2α+β+2 Γ(i+ k + α + β + 1) Γ(j + β + 1) Γ(i+ β + 1) Γ(α + 1)

hj Γ(k + β + 1) Γ(j + α + β + 1) Γ(i+ α + β + 1) (i− k)! (k + 1)!

×
j∑
l=0

(−1)j−l Γ(j + l + α + β + 1) Γ(l + k + β + 2)

Γ(l + β + 1) Γ(l + k + α + β + 3) (j − l)! l!

}
P

(α,β)
j (x)

=
N∑
j=0

Ω(i, j) P
(α,β)
j (x),

where Ω(i, j) have been given in Equations (15) and (16). Accordingly, rewriting the last relation
as a vector form gives∫ x

0

P
(α,β)
i (t) dt = [Ω(i, 0),Ω(i, 1), ...,Ω(i, N)] Φ(x), i = 0, 1, .., N.

This leads to the desired result. �

The following property of the product of two vectors Φ(x) and ΦT (x) will also be used.

Φ(x) ΦT (x) C ' C̃ Φ(x), (17)
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where C and C̃ are a (N + 1)× 1 vector and a (N + 1)× (N + 1) operational matrix of product,
respectively.

Theorem 7.

The entries of the matrix C̃, in Equation (17), are computed as:

C̃jk =
1

hk

N∑
i=0

Ci qijk, j, k = 0, 1, ..., N,

where qijk are computed by Lemma 5 and Ci are the entries of the vector C in Equation (17).

Proof:

The left side of equality (17) is as follows:

Φ(x) ΦT (x) C =


∑N

i=0Ci P
(α,β)
0 (x) P

(α,β)
i (x)∑N

i=0Ci P
(α,β)
1 (x) P

(α,β)
i (x)

...∑N
i=0Ci P

(α,β)
N (x) P

(α,β)
i (x)

 .
We put,

P
(α,β)
j (x) P

(α,β)
i (x) =

N∑
k=0

ak P
(α,β)
k (x), i, j = 0, 1, ..., N. (18)

Multiplying both sides of Equation (18) by P (α,β)
m (x), m, n = 0, 1, ..., N, and integration of the

result from −1 to 1 yields:∫ 1

−1
P

(α,β)
j (x) P

(α,β)
i (x) P (α,β)

m (x) w(α,β)(x) dx

=
N∑
k=0

ak

∫ 1

−1
P

(α,β)
k (x) P (α,β)

m (x) w(α,β)(x) dx

= am hm, m = 0, 1, ..., N.

Therefore,

am =
1

hm

∫ 1

−1
P

(α,β)
j (x) P

(α,β)
i (x) P (α,β)

m (x) w(α,β)(x)dx.

Now, suppose ∫ 1

−1
P

(α,β)
j (x) P

(α,β)
i (x) P (α,β)

m (x) w(α,β)(x) dx = qijm.

We get
am =

qijm
hm

, i, j,m = 0, 1, ..., N.

By substituting am into Equation (18) we have,

P
(α,β)
j (x) P

(α,β)
i (x) =

N∑
k=0

qijk
hk

P
(α,β)
k (x), i, j = 0, 1, ..., N.
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Therefore, each component of the vector Φ(x) ΦT (x) C in Equation (18) is

N∑
i=0

Ci P
(α,β)
j (x) P

(α,β)
i (x) =

N∑
k=0

{
1

hk

N∑
i=0

Ci qijk

}
P

(α,β)
k (x).

Thus, the desirable result is obtained. �

The next theorem presents the general formula to approximate the nonlinear terms, as vr(x) us(x),
which may appear in nonlinear equations.

Theorem 8.

If c and υ are the (N + 1)× 1 vectors, c̃ and υ̃ are the (N + 1)× (N + 1) operational matrices
of the product such that,

u(x) ' ΦT (x) c = cT Φ(x), v(x) ' ΦT (x) υ = υT Φ(x), Φ(x) ΦT (x) c ' c̃ Φ(x),

and Φ(x) ΦT (x) υ ' υ̃ Φ(x), then the following proposition hold:

vr(x) us(x) ' υT (υ̃)r−1 B̃s−1 Φ(x), Bs−1 = (c̃T )s−1 c, r, s = 1, 2, ... .

Proof:

We have,
u2(x) ' (ΦT (x) c)2 = cT Φ(x) ΦT (x) c ' cT c̃ Φ(x),

So, by use of induction, us(x) can be approximated as:

us(x) ' cT (c̃)s−1 Φ(x), s = 1, 2, ... .

To similar way, vr(x) is approximated as follows:

vr(x) ' υT (υ̃)r−1 Φ(x), r = 1, 2, ... .

Using the expressed relations and induction is easily resulted,

vr(x) us(x) ' υT (υ̃)r−1 B̃s−1 Φ(x), Bs−1 = (c̃T )s−1 c, r, s = 1, 2, ... . �

3. Description of proposed scheme

Let us consider a general nonlinear wave equation in the form

P (u, ut, ux, utt, uxx, ...) = 0, (19)

where u = u(x, t) is an unknown function, P is a polynomial in u(x, t) and its derivatives in
which higher order derivatives and nonlinear terms are involved. To obtain approximate solutions,
the following steps are followed:
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Step 1.

We combine the real variables x and t by a compound variable η,

u(x, t) = u(η), η = K(x± V t), (20)

where K and V are arbitrary constants. The wave transformation (20) converts Equation (19) to
a nonlinear ordinary differential equation (ODE) for u = u(η) as:

Q(u, u′, u′′, u′′′, ...) = 0, (21)

where Q is a polynomial of u and its derivatives with respect to η.

Step 2.

Suppose u(n)(η) is the highest order derivative in Equation (21) which can be expressed as
follows:

u(n)(η) '
N∑
i=0

Ci P
(α,β)
i (η) = ΦT (η) C, (22)

where P
(α,β)
i (η) are the Jacobi polynomials of degree i and Ci are the unknown coefficients

which should be determined. Then the other terms in Equation (21) can be approximated by
integrating of Equation (22) from 0 to η as follows:

u(n−1)(η) ' ΦT (η) MT C + u(n−1)(0) ' ΦT (η) MT C + ΦT (η) U1,

u(n−2)(η) ' ΦT (η) (MT )2 C + ΦT (η) MT U1 + ΦT (η) U2,

... (23)

u(η) ' ΦT (η) (MT )n C + ΦT (η)

{ n∑
k=1

(MT )n−k Uk

}
,

where M is the integral operational matrix, u(r)(0) ' ΦT (η) Un−r, r = 0, 1, ..., n−1, and u(r)(0)

are obtained from the initial conditions of the principle problem. Substituting the approximations
(23) into Equation (21) leads to the nonlinear algebraic equation. By using the roots of P (α,β)

N+1 (η),
the algebraic equation resulted is collocated in N + 1 nodes. Hereby, the algebraic equation
reduces the problem to solve a system of nonlinear algebraic equations and unknown coefficients
are obtained.

Step 3.

Because the approximate solution has a polynomial form it can not indicate the soliton nature
of the exact solution; we define a rational exponential approximation (REA) as:

uREA(η) =

∑f
j=−e aj e

jη∑q
k=−p bk e

kη
, bq = 1, η = K(x± V t), (24)

where the numerator and denominator have no common factors and aj and bk are unknown
coefficients which are determined by using the coefficients in the Taylor expansion of the
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approximate solution obtained of the Step 2. For this reason, suppose
∑e+f+p+q+1

i=0 d
(1)
i ηi and∑e+f+p+q+1

i=0 d
(2)
i ηi are the Taylor expansion of (24) and solution series in Step 2. Equating

powers of η in two series leads to e + f + p + q + 1 algebraic equations and completes the
determination of the coefficients aj and bk.

4. Applications of method

Example 1.

The nonlinear dispersive equation formulated by Korteweg and de Vries (KdV) in simplest form
is given by Wazwaz (2009),

ut − 6uux + uxxx = 0. (25)

This equation models a variety of nonlinear phenomena including ion acoustic waves in plasma
and shallow water waves. The first three conservation laws for the KdV equation are as follows
(Wazwaz (2009)),

I1 =

∫ b

a

u(x, t) dx, I2 =

∫ b

a

u2(x, t) dx, I3 =

∫ b

a

(
u3(x, t)− 1

2
u2x(x, t)

)
dx, (26)

To seek the soliton solution of Equation (25), we make the transformation η = K(x−V t). Then
Equation (25) is reduced to the following ordinary differential equation,

−KV u′ − 6Kuu′ +K3u′′′ = 0, (27)

where K and V are arbitrary constants and superscripts indicate the ordinary derivatives with
respect to η. The exact solution obtained by Ebaid (2007) in the form,

u(η) = − 2K2

e−η + 2 + eη
, η = K(x− V t). (28)

We need three conditions for Equation (27) as:

u(0) =
−K2

2
, u′(0) = 0, u′′(0) =

K2

4
, (29)

which are obtained from Equation (28). The nonlinear Equation (27) with the initial conditions
(29) is approximated using the Jacobi Collocation method introduced in Section 3. For this end,
let us consider the following approximation,

u′′′(η) ' ΦT (η) C. (30)

Integration of Equation (30) with respect to η from 0 to η, one gets the following approximation
for u′′(η),
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u′′(η) ' ΦT (η) MT C + u′′(0) ' ΦT (η) MT C + ΦT (η) U1, (31)

where u′′(0) is approximated by ΦT (η) U1 which U1 is a (N + 1) × 1 known vector. Again,
integrating Equation (31) with respect to η from 0 to η, one gets the following approximation
for u′(η),

u′(η) ' ΦT (η) (MT )2 C + ΦT (η) MT U1 + ΦT (η) U2, (32)

where ΦT (η) U2 ' u′(0). Finally, integrating Equation (32) with respect to η leads to get the
following approximation for u(η),

u(η) ' ΦT (η) (MT )3 C + ΦT (η) (MT )2 U1 + ΦT (η) MT U2 + ΦT (η) U3, (33)

where ΦT (η) U3 ' u(0). Also, the nonlinear term in Equation (27) is approximated as follows:

u(η) u′(η) ' V T
1 Φ(η) ΦT (η)V2 ' V T

1 Ṽ2 Φ(η) = ΦT (η) Ṽ T
2 V1, (34)

where V1 = (MT )3 C + (MT )2 U1 + MT U2 + U3, V2 = (MT )2 C + MT U1 + U2, and Ṽ2 is
operational matrix of product and its entries are determined in terms of the components of the
vector V2. Substituting the approximations (30)–(34) into Equation (27), leads to the following
nonlinear algebraic equation.

ΦT (η)

{
−KV

(
(MT )2C +MTU1 + U2

)
− 6K Ṽ T

2 V1 +K3 C

}
≈ 0. (35)

Setting K = 1, V = K2, N = 20, and using the roots of P (α,β)
21 (η), Equation (35) is collocated in

21 collocation nodes for different values of α and β parameters. Hereby, Equation (35) reduces
the problem to solve a system of nonlinear algebraic equations and unknown coefficients are
obtained for some values of α and β parameters. Substituting the resultant vector C into Equation
(33) leads to an approximate solution to the exact solution (28). Now, in order to improve the
approximate solution (28) and achieve the soliton solutions, four cases are considered for the
rational approximation (24):

Case I

e = f = 1, p = q = 1,

In this case, Equation (24) will be as follows:

uERA(η) =
a−1e

−η + a0 + a1e
η

b−1e−η + b0 + eη
. (36)

Equating the Taylor expansions of (36) and (33) yields a set of algebraic equations for a−1, a0, a1,
b−1, and b0. Solving the system of algebraic equations with the aide of Maple, the coefficients are
obtained. Table 1 shows the maximum absolute errors of the approximate solutions for different
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values of α and β parameters. Table 2 displays the numerical values of conservation quantities
(26) in various times for α = β = 1/2, α = 2, β = 2, a = −20, and b = 100. The analytical
values are: I1 = −2, I2 = 0.6666666666, and I3 = −0.3333333333. As it can be seen from
Table 2, the numerical values are almost equal the analytical values of conservation quantities.
This shows the proposed scheme is stable. Also, the absolute errors functions obtained by the
proposed method are displayed in Figure 1 for α = 1, β = 2, and t = 1, 15, 30.

Table 1. Maximum absolute errors of Example 1 for different

values of α and β, e = f = 1 and p = q = 1

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 1.5× 10−10 (1, 2) 2.5× 10−12

(1
2
, 1
2
) 4.0× 10−12 (1, 1) 3.0× 10−12

(−1
2
, 1
2
) 6.0× 10−12 (2, 2) 2.0× 10−12

(1
2
,−1

2
) 6.0× 10−12 (8, 7) 2.0× 10−13

(−1
2
, 1) 5.0× 10−12 (10, 10) 9.0× 10−14

Table 2. Numerical values of I1, I2, and I3 of Example 1 for α = β = 1
2 , α = β = 2,

and e = f = p = q = 1

(α, β) = (2, 2)

t I1 I2 I3
0 −1.9999999956366 0.666666667464 −0.33333323040

5 −1.9999999997311 0.666666672909 −0.33333331863

10 −1.9999999997587 0.666666662266 −0.33333318910

15 −1.9999999997589 0.666666672924 −0.33333331072

20 −1.9999999997589 0.666666672061 −0.33333326198

25 −1.9999999997589 0.666666665480 −0.33333347100

(α, β) = (1
2
, 1
2
)

t I1 I2 I3
0 −1.999999995370 0.666666665155 −0.333333335579

5 −1.999999999464 0.6666666669404 −0.333333285760

10 −1.999999999492 0.666666665837 −0.333333329469

15 −1.999999999492 0.666666667028 −0.333333293896

20 −1.999999999492 0.666666667870 −0.333333313797

25 −1.999999999492 0.666666661850 −0.333333377706

Case II

e = f = 2, p = q = 2,

In this case, Equation (24) will be as follows:

uERA(η) =
a−2 e

−2η + a−1 e
−η + a0 + a1 e

η + a2 e
2η

b−2 e−2η + b−1 e−η + b0 + b1 eη + e2η
. (37)
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Figure 1. Behavior of error function of Example 1 for α = 1, β = 2, t = 1, 15, 30

Equating the Taylor expansions of (37) and (33) yields a set of algebraic equations for a−2, a−1,
a0, a1, a2, b−2, b−1, b0, and b1. Solving the system of algebraic equations the coefficients are
obtained. Table 3 shows the maximum absolute errors of the approximate solutions for different
values of α and β parameters. Table 4 displays the numerical values of conservation quantities
(26) in various times for α = β = 1/2, α = 2, β = 2, a = −20, and b = 100. As can be
seen from Table 4, the numerical values are almost equal the analytical values of conservation
quantities. This shows the proposed scheme is stable. Also, the approximate solution and absolute
error function obtained by the proposed method are displayed in Figure 2 for α = 8 and β = 7.

Case III

e = f = 1, p = q = 2,

In this case, Equation (24) will be as follows:
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uERA(η) =
a−1 e

−η + a0 + a1 e
η

b−2 e−2η + b−1 e−η + b0 + b1 eη + e2η
. (38)

Equating the Taylor expansions of (38) and (33) yields a set of algebraic equations for a−1,
a0, a1, b−2, b−1, b0, and b1. Solving the system of algebraic equations with the aide of Maple,
the coefficients are obtained. Table 5 shows the maximum absolute errors of the approximate
solutions for different values of α and β. Table 6 displays the numerical values of conservation
quantities (26) in various times for α = β = 1/2, α = 2, β = 2, a = −20, and b = 100. As can
be seen from Table 6, the numerical values are almost equal the analytical values of conservation
quantities. This shows the proposed scheme is stable. Table 7 displays different values of the
exact and approximate solutions in various points for α = −1/2, β = 1, α = β = 10. As can be
seen from Table 7 the results of the solutions obtained by the proposed scheme are almost the
same as the results of the exact solutions.

Table 3. Maximum absolute errors of Example 1 for different

values α and β, e = f = 2, and p = q = 2

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 1.8× 10−10 (1, 2) 2.0× 10−12

(1
2
, 1
2
) 4.0× 10−12 (1, 1) 3.0× 10−12

(−1
2
, 1
2
) 6.0× 10−12 (2, 2) 2.0× 10−12

(1
2
,−1

2
) 6.0× 10−12 (8, 7) 2.0× 10−13

(−1
2
, 1) 5.0× 10−12 (10, 10) 9.0× 10−14

Table 4. Numerical values of I1, I2, and I3 of Example 1 for α = β = 1
2 , α = β = 2 and

e = f = p = q = 2

(α, β) = (2, 2)

t I1 I2 I3
0 −1.999999995805 0.66666666666822547 −0.33333333333320121

5 −2.000000000201 0.66666666666822550 −0.33333333333320121

10 −2.000000000230 0.66666666666822548 −0.33333333333320122

15 −2.000000000230 0.66666666666822550 −0.33333333333320121

20 −2.000000000230 0.66666666666822548 −0.33333333333320122

25 −2.000000000230 0.66666666666822550 −0.33333333333320121

(α, β) = (1
2
, 1
2
)

t I1 I2 I3
0 −1.99999999605 0.66666666666988152 −0.33333333333305633

5 −2.00000000044 0.66666666666988157 −0.33333333333305631

10 −2.00000000047 0.66666666666988153 −0.33333333333305634

15 −2.00000000048 0.66666666666988157 −0.33333333333305631

20 −2.00000000048 0.66666666666988153 −0.33333333333305634

25 −2.00000000048 0.66666666666988157 −0.33333333333305631
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Figure 2. (a) Plot of approximate solution, (b) Plot of error function of Example 1 for α = 8, β = 7,
e = f = p = q = 2

Figure 3. Plot of exact and approximate solutions of Example 1 for α = β = 1/2 and various times: t = 1, 5, 9, 13

Case IV

e = 0, f = p = q = 2,

In this case, Equation (24) will be as follows:

uERA(η) =
a0 + a1 e

η + a2 e
2η

b−2 e−2η + b−1 e−η + b0 + b1 eη + e2η
. (39)

Equating the Taylor expansions of (39) and (33) yields a set of algebraic equations for a−1, a0,
a1, b−2, b−1, b0, and b1. Solving the system of algebraic equations, the coefficients are obtained.
Table 8 shows the maximum absolute errors of the approximate solutions for different values
of α and β parameters. Table 9 displays the numerical values of conservation quantities (26) in
various times for α = β = 1, α = −1/2, β = 1/2, a = −20, and b = 100. As can be seen from
Table 9, the numerical values are almost equal the analytical values of conservation quantities.
This shows the proposed scheme is stable. In Figure 3 the exact and approximate solutions are



180 K. Sadri & H. Ebrahimi

compared for the case α = β = 1/2 and various times: t = 1, 5, 9, 13.

Table 5. Maximum absolute errors of Example 1 for different

values β, e = f = 1 and p = q = 2

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 3.0× 10−13 (1, 2) 6.0× 10−15

(1
2
, 1
2
) 1.0× 10−14 (1, 1) 8.0× 10−15

(−1
2
, 1
2
) 1.6× 10−14 (2, 2) 4.0× 10−15

(1
2
,−1

2
) 1.6× 10−14 (8, 7) 3.0× 10−16

(−1
2
, 1) 1.4× 10−14 (10, 10) 1.2× 10−16

Table 6. Numerical values of I1, I2, and I3 of Example 1 for α = β = 1
2 , α = β = 2, and

e = f = 1, p = q = 2

(α, β) = (2, 2)

t I1 I2 I3
0 −1.99999999999997449 0.66666666666665677 −0.333333333333330047

5 −1.99999999999997450 0.66666666666665678 −0.333333333333330044

10 −1.99999999999997448 0.66666666666665678 −0.333333333333330047

15 −1.99999999999997315 0.66666666666665678 −0.333333333333330044

20 −1.99999999999977361 0.66666666666665678 −0.333333333333330047

25 −1.99999999997016208 0.66666666666665678 −0.333333333333330044

(α, β) = (1
2
, 1
2
)

t I1 I2 I3
0 −1.99999999999994007 0.6666666666666435 −0.333333333333325685

5 −1.99999999999994009 0.6666666666666435 −0.333333333333325681

10 −1.99999999999994006 0.6666666666666435 −0.333333333333325685

15 −1.99999999999993874 0.6666666666666435 −0.333333333333325681

20 −1.99999999999973919 0.6666666666666435 −0.333333333333325685

25 −1.99999999997012767 0.6666666666666435 −0.333333333333325681

Table 7. Comparison of exact and approximate solutions of Example 1 for N = 20, α = − 1
2 , β = 1, and α = β = 10

(xi, ti) uExact
uREA(x, t)

(α, β) = (− 1
2 , 1)

ErrorAbs
uREA(x, t)

(α, β) = (10, 10)
ErrorAbs

(−3, 0.2) −0.07526353790914 −0.07526353790913 7.6405× 10−15 −0.07526353790914 6.9076× 10−17

(−2.5, 0.4) −0.09886713787329 −0.09886713787328 9.4728× 10−15 −0.09886713787329 8.5609× 10−17

(−2, 0.6) −0.12871659835155 −0.12871659835155 1.1405× 10−14 −0.12871659835155 1.0302× 10−16

(−1.5, 1) −0.14020743309021 −0.14020743309020 1.2032× 10−14 −0.14020743309022 1.0868× 10−16

(−1, 1.2) −0.17960065808014 −0.17960065808012 1.3700× 10−14 −0.17960065808014 1.2365× 10−16

(3, 2) −0.39322386648296 −0.39322386648296 8.1597× 10−15 −0.39322386648296 8.6290× 10−17

(5, 10) −0.01329611334158 −0.01329611334158 1.5486× 10−15 −0.01329611334158 1.4014× 10−17

(10, 6) −0.03532541242658 −0.03532541242657 3.6503× 10−15 −0.03532541242658 3.5526× 10−17
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Table 8. Maximum absolute errors of Example 1 for different

values α and β, e = 0, and f = p = q = 2

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 5.0× 10−10 (1, 2) 3.0× 10−12

(1
2
, 1
2
) 9.0× 10−12 (1, 1) 1.8× 10−11

(−1
2
, 1
2
) 6.0× 10−12 (2, 2) 2.0× 10−11

(1
2
,−1

2
) 6.0× 10−12 (8, 7) 2.0× 10−13

(−1
2
, 1) 6.0× 10−12 (10, 10) 3.0× 10−13

Table 9. Numerical values of I1, I2 and I3 of Example 1 for α = β = 1, α = −β = −1/2 and

e = 0, f = p = q = 2

(α, β) = (1, 1)

t I1 I2 I3
0 −1.99999999975 0.6666666666597 −0.333418

5 −1.99999999977 0.6666666666618 −0.333376

10 −1.99999999978 0.6666666666597 −0.333418

15 −1.99999999980 0.6666666666618 −0.333376

20 −1.99999999982 0.6666666666597 −0.333418

25 −1.99999999981 0.6666666666618 −0.333376

(α, β) = (−1
2
, 1
2
)

t I1 I2 I3
0 −1.99999999954 0.66666666666144339 −0.333333333333714859

5 −1.99999999957 0.66666666666144339 −0.333333333333714855

10 −1.99999999960 0.66666666666144339 −0.333333333333714859

15 −1.99999999963 0.66666666666144339 −0.333333333333714855

20 −1.99999999967 0.66666666666144339 −0.333333333333714859

25 −1.99999999967 0.66666666666144339 −0.333333333333714855

Example 2.

A well known model of nonlinear dispersive waves was proposed by Boussinesq in the form of
Wazwaz (2009):

utt = uxx + 3(u2)xx + uxxxx. (40)

The Boussinesq equation describes motion of long waves in shallow water under gravity and in
a one-dimensional nonlinear lattice. The first four conservation laws for the Boussinesq equation
are as follows (Wazwaz (2009)),

I1 =

∫ b

a

ut dx = 0, I2 =

∫ b

a

xut dx, I3 =

∫ b

a

(−u+ tut) dx, I4 =

∫ b

a

(−xu+xtut) dx = 0,

(41)
To seek the soliton solution of Equation (40), we introduced the wave variable η = Kx + V t.
Then, Equation (40) is reduced to the following ordinary differential equation,

(V 2 −K2)u′′ − 6K2(u′)2 − 6K2uu′′ −K4u(4) = 0, (42)
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where K and V are arbitrary constants and superscripts indicate the ordinary derivatives with
respect to η. The exact solution obtained by Ebaid (2007) in the form,

u(η) =
2K2 e2η

eη + 2 e2η + e3η
, η = Kx+ V t. (43)

We need four conditions for Equation (42) as:

u(0) =
K2

2
, u′(0) = 0, u′′(0) =

−K2

4
, u′′′(0) = 0, (44)

which are obtained from Equation (43). The nonlinear Equation (42) with the initial conditions
(44) is approximated using the Jacobi Collocation method introduced in Section 3. For this end,
let us consider the following approximations,

u(4)(η) ' ΦT (η) C,

u′′′(η) ' ΦT (η) MT C + ΦT (η) U1,

u′′(η) ' ΦT (η) (MT )2 C + ΦT (η) MT U1 + ΦT (η) U2,

u′(η) ' ΦT (η) (MT )3 C + ΦT (η) (MT )2 U1 + ΦT (η) MT U2 + ΦT (η) U3,

u(η) ' ΦT (η) (MT )4 C + ΦT (η) (MT )3 U1 + ΦT (η) (MT )2 U2 + ΦT (η) MT U3 + ΦT (η) U4,
(45)

where u(k)(0) are approximated by ΦT (η) U4−k, k = 0, 1, 2, 3, 4, which Uk are a (N + 1) × 1

known vectors. Also, the nonlinear terms in Equation (42) are approximated as follows:

(u′)2(η) ' ΦT (η) Ṽ T
1 V1,

u(η) u′′(η) ' ΦT (η) Ṽ3 V2,
(46)

where

V1 = (MT )3 C + (MT )2 U1 +MT U2 + U3,

V2 = (MT )4 C + (MT )3 U1 + (MT )2 U2 +MT U3 + U4,

V3 = (MT )2 C +MT U1 + U2,

and Ṽ1 and Ṽ3 are operational matrices of product and their entries are determined in terms of
the components of the vectors V1 and V3, respectively. Substituting the approximations (45)–(46)
into Equation (42), leads to the following nonlinear algebraic equation.

ΦT (η)

{
(V 2−K2)

(
(MT )2 C+MT U1 +U2

)
−6K2 Ṽ T

1 V1−6K2 Ṽ T
3 V2−K4 C

}
≈ 0. (47)

Setting K = 1, V = −K
√

1 +K2, N = 20, and using the roots of P (α,β)
21 (η), Equation (47)

is collocated in 21 collocation nodes for different values of parameters α and β. Hereby, the
Equation (47) reduces the main problem to solve a system of nonlinear algebraic equations and
unknown coefficients are obtained for some values of α and β parameters. Substituting the vector
C resulted into approximations (45) leads to an approximate solution for the exact solution (43).
Now, in order to improve the approximate solution (45) and achieve the soliton solutions, two
cases are considered for the rational approximation (24):
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Case I

e = f = 1, p = q = 1,

In this case, equating the Taylor expansions of (36) and (45) yields a set of algebraic equations
for a−1, a0, a1, b−1, and b0. Solving the system of algebraic equations with the aide of Maple,
the coefficients are obtained. Table 10 shows the maximum absolute errors of the approximate
solutions for different values of α and β parameters. Table 11 displays the numerical values of
conservation quantities (41) in various times for α = β = 0, a = −50, and b = 50. As it can be
seen from Table 11, the numerical values are almost equal the analytical values of conservation
quantities. This shows the proposed scheme is stable. Also, the plots of approximate solution
and absolute error function are displayed in Figure 4 for α = β = 0.

Table 10. Maximum absolute errors of Example 2 for different

values α and β, e = f = 1 and p = q = 1

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 1.5× 10−10 (1, 1) 3.0× 10−12

(1
2
, 1
2
) 4.0× 10−12 (3, 3) 1.2× 10−12

(−1
2
, 1
2
) 6.0× 10−12 (5, 7) 4.0× 10−13

(1
2
,−1

2
) 6.0× 10−12 (12, 10) 8.0× 10−14

Table 11. Numerical values of I1, I2, I3, and I4 of Example 2 for α = β = 0, e = f = 1, p = q = 1

t I1 I2 I3 I4
0 −0.0000 2.828427125942 −1.999999985 7.5659× 10−13

5 −1.5616× 10−19 2.828427125942 −1.999999985 1.0010× 10−12

10 −4.4699× 10−17 2.828427125942 −1.999999985 1.1782× 10−12

15 −1.2795× 10−14 2.828427125941 −1.999999985 7.6976× 10−12

20 −3.6625× 10−12 2.828427125755 −1.999999985 2.8534× 10−9

25 −1.0484× 10−9 2.828427072474 −2.000000005 1.0315× 10−6

Case II

e = f = 1, p = q = 2,

In this case, equating the Taylor expansions of (38) and (45) yields a set of algebraic equations
for a−1, a0, a1, b−2, b−1, b0, and b1. Solving the system of algebraic equations, the coefficients are
obtained. Table 12 shows the maximum absolute errors of the approximate solutions for different
values of α and β parameters. Table 13 displays the numerical values of conservation quantities
(41) in various times for α = 5, β = 7, a = −50, and b = 50. As can be seen from Table 13, the
numerical values are almost equal the analytical values of conservation quantities. This shows
the proposed scheme is stable. In Figure 5 the exact and approximate solutions are compared for
the case α = β = 0 and various times: t = 1, 5, 9, 13.
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Figure 4. (a) Plot of approximate solution, (b) Plot of error function of Example 2 for α = β = 0,
e = f = p = q = 1

Table 12. Maximum absolute errors of Example 2 for different

values α and β, e = f = 1 and p = q = 2

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 3.0× 10−13 (1, 1) 8.0× 10−15

(1
2
, 1
2
) 1.0× 10−14 (3, 3) 2.5× 10−15

(−1
2
, 1
2
) 1.6× 10−14 (5, 7) 8.0× 10−16

(1
2
,−1

2
) 1.6× 10−14 (12, 10) 1.0× 10−16

Table 13. Numerical values of I1, I2, I3 and I4 of Example 2 for α = 5, β = 7 and e = f = 1, p = q = 2

t I1 I2 I3 I4
0 2.2673× 10−18 2.82842712475 −1.9999999999999958 −4.0081× 10−16

5 1.8568× 10−17 2.82842712475 −1.9999999999999959 −6.4615× 10−16

10 8.1641× 10−16 2.82842712475 −2.0000000000000033 −3.8436× 10−13

15 9.5569× 10−13 2.82842712470 −2.0000000000136556 −6.9563× 10−10

20 1.1253× 10−9 2.82842706744 −2.0000000217095266 1.1056× 10−6

25 1.3248× 10−9 2.82835965426 −2.0000321853046230 1.6390× 10−3

Example 3.

The Kaup–Kuperschmidt equation fifth–order equation is given by (Wazwaz (2009)),

ut + 20 uuxxx + 50 uxuxx − 80 u2ux − uxxxxx = 0. (48)

The first two conservation laws for the Kaup–Kuperschmidt equation are as follows, Wazwaz
(2009),

I1 =

∫ b

a

u dx, I2 =

∫ b

a

(
1

3
u3 − 1

8
u2x

)
dx. (49)
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Figure 5. Plot of exact and approximate solutions of Example 2 for α = β = 0 and various times: t = 1, 5, 9, 13

To seek the soliton solution of Equation (48), we introduced the wave variable η = x−V t. Then
Equation (48) reduce to the following ordinary differential equation,

−V u′ + 20 uu′′′ + 50 u′u′′ − 80 u′u2 − u(5) = 0, (50)

where V is arbitrary constant and superscripts indicate the ordinary derivatives with respect to
η. The exact solution is obtained by Wazwaz (2009) in the form,

u(η) =
1

16

1− 10 eη + e2η

1 + 2 eη + e2η
, η = x− V t. (51)

We need five conditions for Equation (50) as:

u(0) = −1

8
, u′(0) = 0, u′′(0) =

3

32
, u′′′(0) = 0, u′′′′(0) = − 3

16
, (52)

which are obtained from Equation (51). The nonlinear Equation (50) with the initial conditions
Equation (52) is approximated by using the Jacobi Collocation method introduced in Section 3.
For this end, let us consider the following approximations,

u(5)(η) ' ΦT (η) C,

u′′′′(η) ' ΦT (η) MT C + ΦT (η) U1,

u′′′(η) ' ΦT (η) (MT )2 C + ΦT (η) MT U1 + ΦT (η) U2,

u′′(η) ' ΦT (η) (MT )3 C + ΦT (η) (MT )2 U1 + ΦT (η) MT U2 + ΦT (η) U3,

u′(η) ' ΦT (η) (MT )4 C + ΦT (η) (MT )3 U1 + ΦT (η) (MT )2 U2 + ΦT (η) MT U3

+ ΦT (η) U4,

u(η) ' ΦT (η) (MT )5 C + ΦT (η) (MT )4 U1 + ΦT (η) (MT )3 U2 + ΦT (η) (MT )2 U3

+ ΦT (η) MT U4 + ΦT (η) U5,

(53)

where u(k)(0) are approximated by ΦT (η) U5−k, k = 0, 1, ..., 5, which Uk are a (N + 1) × 1

known vectors. Also, the nonlinear terms in Equation (42) are approximated as follows:

u(η)u′′′(η) ' ΦT (η) Ṽ T
2 V1, u′(η)u′′(η) ' ΦT (η) Ṽ T

4 V3, u(η)u2(η) ' ΦT (η) W̃ TV3, (54)
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where

V1 = (MT )5 C + (MT )4 U1 + (MT )3 U2 + (MT )2 U3 +MT U4 + U5,

V2 = (MT )2 C +MT U1 + U2,

V3 = (MT )4 C + (MT )3 U1 + (MT )2 U2 +MT U3 + U4,

V4 = (MT )3 C + (MT )2 U1 +MT U2 + U3, W = Ṽ T
1 V1,

and Ṽ1, Ṽ2, Ṽ4, and W̃ are operational matrices of product and their entries are determined in terms
of the components of the vectors V1, V2, V4 and W , respectively. Substituting the approximations
(53)–(54) into Equation (50), this leads to the following nonlinear algebraic equation.

ΦT (η)

{
−V
(

(MT )4 C+(MT )3 U1+(MT )2 U2+M
T U3+U4

)
+20 Ṽ T

2 V1+50 Ṽ T
4 V3−80 C

}
≈ 0.

(55)
Setting V = −1/16, N = 20 and using the roots of P (α,β)

21 (η), Equation (55) is collocated in 21
collocation nodes for different values of parameters α and β. Thus, Equation (55) reduces the
problem to solve a system of nonlinear algebraic equations and unknown coefficients are obtained
for some values of α and β parameters. Substituting the vector C resulted into Equation (53) leads
to an approximate solution for the exact solution (51). Now in order to improve the approximate
solution (53) and achieve the soliton solutions and for simplicity we set e = f = p = q = 1. So,
equating the Taylor expansions of (36) and (53) yields a set of algebraic equations for a−1, a0, a1,
b−1, and b0. Solving the system of algebraic equations with the aide of Maple, the coefficients are
obtained. Table 14 shows the maximum absolute errors of the approximate solutions for different
values of α and β. Table 15 displays the numerical values of conservation quantities (49) in
various times for α = β = 0, α = β = 1/2, α = β = 10, a = −50, and b = 50. As can be
seen from Table 15, the numerical values are almost equal the analytical values of conservation
quantities. This shows the proposed scheme is stable.

Table 14. Maximum absolute errors of Example 3 for different

values α and β, e = f = p = q = 1

(α, β) ErrorAbs (α, β) ErrorAbs
(0, 0) 1.8× 10−10 (1, 1) 1.2× 10−12

(1
2
, 1
2
) 1.6× 10−12 (4, 4) 3.0× 10−13

(−1
2
, 1
2
) 2.0× 10−12 (6, 8) 1.2× 10−13

(1
2
,−1

2
) 2.0× 10−12 (10, 7) 7.0× 10−14

(1, 1
2
) 1.4× 10−12 (10, 10) 3.0× 10−14

Table 15. Numerical values of I1 and I2 of Example 3 for α = β = 0, α = β = 1/2, α = β = 10, and e = f = p = q = 1

(α, β) = (0, 0) (α, β) = (12 ,
1
2 ) (α, β) = (10, 10)

t I1 I2 I1 I2 I1 I2
0 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.00403623922

5 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.00403621428

10 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.00403621065

15 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.004036239218

20 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.004036235813

25 5.50000970 0.0040364929 5.50000774 0.0040364861 5.500000257 0.004036239218
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5. Conclusion

In this paper, a computational method based on the Collocation method was presented for solving
some of nonlinear partial differential equations in terms of one variable Jacobi polynomials by
converting them to a nonlinear system of algebraic equations and then improving the approximate
solutions obtained by introducing the rational exponential approximation. This study shows that
the proposed method is efficient and practically well suited for use in finding approximate
solutions for the KdV, Boussinesq, and Kaup–Kuperschmidt equations. The results indicate the
proposed approach can be regarded as simple and applicable approach to numerically solve these
type of nonlinear equations. It is predicted that the Jacobi collocation method will be a powerful
tools for investigating approximate solutions and even analytic to wide classes of nonlinear wave
equations. For numerical purposes the computer programs have been written in Maple 13.
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