Some Results on f-Simultaneous Chebyshev Approximation

Sh. Al-Sharif & Kh. Qaraman

Mathematics Department
Yarmouk University
Irbed, Jordan

Received: February 26, 2015; Accepted: October 30, 2015

Abstract

Let X be Hausdorff topological vector space and f be a real valued continuous function on X. In this paper we introduce and study the concept of f-simultaneous approximation of a nonempty subset K of X as a generalization to the problem of simultaneous approximation. Further we present some results regarding f-simultaneous approximation in the quotient space.

Keywords: f-best simultaneous approximation; f-simultaneous Chebyshev approximation; f-simultaneously proximinal sets; f-quasi-simultaneously Chebyshev

MSC 2010 No.: 41A65, 41A50

1. Introduction

Let K be a subset of a Hausdorff topological vector space X and f be a real valued continuous function on X. For $x \in X$, set $F_K(x) = \inf_{k \in K} f(x - k)$. A point $k_0 \in K$ is called f-best approximation to x in K if $F_K(x) = f(x - k_0)$. The set $P^f_K(x) = \{k_0 \in K : F_K(x) = f(x - k_0)\}$ denotes the set of all f-best approximations to x in K. Note that this set may be empty. The set K is said to be f-proximinal (f-Chebyshev) if for each $x \in X$, $P^f_K(x)$ is non-empty (singleton). The notion of f-best approximation in a vector space X was given by Breckner and Brosowski, and in a Hausdorff topological vector space X by Narang. For a
Hausdorff locally convex topological vector space and a continuous sublinear functional \(f \) on \(X \), Breckner, Brosowski and Govindarajulu proved certain results on best approximation relative to the functional \(f \). By using the existence of elements of \(f \)-best approximation some results on fixed point were proved by Pai and Veermani.

As a generalization to the problem of simultaneous approximation see Saidi and Singer, we introduce the concept of best \(f \)-simultaneous approximation as follows.

Definition 1.

Let \(f \) be a real valued continuous function on a Hausdorff topological vector space \(X \). A subset \(A \) of \(X \) is called \(f \)-bounded if there exists \(M > 0 \) such that \(|f(x)| \leq M \) every \(x \in A \).

Note that \(f \)-bounded set need not be bounded in the classical sense, for example if \(f(x) = e^{-x} \), the set \([0, \infty)\) is an \(f \)-bounded subset of real numbers.

Definition 2.

Let \(X \) be a Hausdorff topological real vector space, \(f \) be a real valued continuous function on \(X \) and \(K \) be a non-empty subset of \(X \). A point \(k_0 \in K \) is called \(f \)-best simultaneous approximation in \(K \) if there exists an \(f \)-bounded subset \(A \) of \(X \) such that

\[
F_K(A) = \inf_{k \in K} \sup_{a \in A} |f(a - k)| = \sup_{a \in A} |f(a - k_0)|.
\]

The set of all \(f \)-best simultaneous approximations to an \(f \)-bounded subset \(A \) of \(X \) in \(K \) is denoted by

\[
P_f^f(K) = \left\{ k \in K : F_K(A) = \sup_{a \in A} |f(a - k)| \right\}.
\]

The set \(K \) is called \(f \)-simultaneously proximinal (\(f \)-simultaneously Chebyshev) if for each \(f \)-bounded set \(A \) in \(X \), \(P_f^f(K) \neq \emptyset \) (singleton).

We note that if \(f(x) = \|x\| \) (\(f(x) = \|x\| + \epsilon \)), then the concept of \(f \)-best approximation is precisely best approximation, (best \(\epsilon \)-approximation) (see Khalil, Rezapour, Singer, and others).

A set \(K \) is said to be inf-compact at a point \(x \in X \) (Pai and Veermani), if each minimizing sequence in \(K \) (i.e. \(f(x - k_n) \to F_K(x) \)) has a convergent subsequence in \(K \). The set \(K \) is called inf-compact if it is inf-compact at each \(x \in X \). A subset \(K \) of \(X \) is called \(f \)-compact (Moghaddam) if for every sequence \(\{k_n\} \) in \(K \), there exist a subsequence \(\{k_{n_i}\} \) of \(\{k_n\} \) and \(k_0 \in K \) such that \(f(k_{n_i} - k_0) \to 0 \). It is easy to see that if \(K \) is \(f \)-compact or inf-compact, then \(K \) is \(f \)-simultaneously proximinal.

In this paper we introduce and study the concept of \(f \)-simultaneous approximation of a subspace \(K \) of a Hausdorff topological real vector space \(X \), existence and uniqueness. Certain results regarding \(f \)-simultaneous approximation in quotient spaces is obtained by generalizing some of the results in Moghaddam.
Throughout this paper X is a Hausdorff topological real vector space and f is a real valued continuous function on X.

2. f-Simultaneous Approximation

In this section we give some characterization of f-proximinal sets in X. We begin by the following definitions:

Definition 3.

A function $f : X \to \mathbb{R}$ is called

1. absolutely subadditive if $|f(x + y)| \leq |f(x)| + |f(y)|$ for all $x, y \in X$.
2. absolutely homogeneous if $f(\alpha x) = |\alpha| f(x)$, for all $x \in X$ and all $\alpha \in \mathbb{R}$.

Definition 4.

A subset K of X is called f-closed if for all sequences $\{k_m\}$ of K and for all $x \in X$ such that $f(x - k_m) \to 0$ we have $x \in K$.

Theorem 5.

Let K be a subset of X. Then,

1. $F_{K+y}(A + y) = F_K(A)$, for all f-bounded sets $A \subset X$, $y \in X$.
2. $P_{K+y}^f(A + y) = P_K^f(A) + y$, for all f-bounded sets $A \subset X$, $y \in X$.
3. K is f-simultaneously proximinal (f-simultaneously Chebyshev) if and only if $K + y$ is f-simultaneously proximinal (f-simultaneously Chebyshev) for every $y \in X$.

More over if f is absolutely homogeneous function, then

4. $F_{\lambda K}(\lambda A) = |\lambda| F_K(A)$, for all f-bounded sets $A \subset X$ and $\lambda \in \mathbb{R}$.
5. $P_{\lambda K}^f(\lambda A) = \lambda P_K^f(A)$, for all f-bounded sets $A \subset X$ and $\lambda \in \mathbb{R}$.
6. K is f-simultaneously proximinal (f-simultaneously Chebyshev) if and only if λK is f-simultaneously proximinal (f-simultaneously Chebyshev), $\lambda \in \mathbb{R}$.

Proof:

1. Let $A \subset X$, f-bounded set. Then

$$F_{K+y}(A + y) = \inf_{w \in K} \sup_{a \in A} |f((a + y) - (w + y))| = F_K(A).$$

2. The equation

$$\sup_{a \in A} |f(a - k_0)| = \inf_{k \in K} \sup_{a \in A} |f((a + y) - (k + y))| = \inf_{k \in K} \sup_{a \in A} |f(a - k)|,$$
implies that \(k_0 + y \in \mathcal{P}_{K+y}(A + y) \) if and only if \(k_0 \in \mathcal{P}_K(A) \). Thus,

\[
\mathcal{P}_{K+y}(A + y) = \mathcal{P}_K(A) + y.
\]

(3) Follows immediately from part two.

(4) Let \(A \subset X \), be \(f \)-bounded set, \(\lambda \in \mathbb{R} \). Then,

\[
F_{\lambda K}(\lambda A) = \inf_{k \in K} \sup_{a \in A} |f(\lambda a - \lambda k)| = |\lambda| \inf_{k \in K} \sup_{a \in A} |f(a - k)| = |\lambda| F_K(A).
\]

(5) If \(\lambda = 0 \), we are done. If \(\lambda \neq 0 \) and \(k_0 \in \mathcal{P}_{\lambda K}(\lambda A) \), then \(k_0 \in \lambda K \) and

\[
\sup_{a \in A} |f(\lambda a - k_0)| = \inf_{k \in K} \sup_{a \in A} |f(\lambda a - \lambda k)|.
\]

This implies that

\[
\sup_{a \in A} \left| f(a - \frac{1}{\lambda} k_0) \right| = F_K(A),
\]

which implies that \(\frac{1}{\lambda} k_0 \in \mathcal{P}_K(A) \).

(6) Follows immediately from part 5. \(\square \)

Theorem 6.

Let \(f \) be an absolutely homogeneous real valued function on \(X \) and \(M \) be a subspace of \(X \). Then

(1) \(F_M(\lambda A) = |\lambda| F_M(A) \), for all for all \(f \)-bounded sets \(A \subset X \) and \(\lambda \in \mathbb{R} - \{0\} \).

(2) \(\mathcal{P}_M^f(\lambda A) = \lambda \mathcal{P}_M^f(A) \), for all for all \(f \)-bounded sets \(A \subset X \) and \(\lambda \in \mathbb{R} - \{0\} \).

Proof:

(1) Let \(A \subset X \) be an \(f \)-bounded set and \(\lambda \neq 0 \in \mathbb{R} \). Then,

\[
F_M(\lambda A) = \inf_{m \in M} \sup_{a \in A} |f(\lambda a - m)| = |\lambda| \inf_{m' \in M} \sup_{a \in A} \left| f(a - m') \right| = |\lambda| F_M(A).
\]

(2) Let \(m_0 \in \mathcal{P}_M^f(\lambda A) \). Then,
\[
\sup_{a \in A} |\lambda| |f(a - \frac{1}{\lambda} m_0)| = \sup_{a \in A} |f(\lambda a - m_0)| \\
= \inf_{m \in M} \sup_{a \in A} |f(\lambda a - m)| \\
= \inf_{m' \in M} \sup_{a \in A} |\lambda| |f(a - m')|.
\]

Therefore,
\[
\sup_{a \in A} |f(a - \frac{1}{\lambda} m_0)| = \inf_{m' \in M} \sup_{a \in A} |f(a - m')| = F_M(A),
\]
for all \(\lambda \in \mathbb{R} - \{0\} \), which implies that \(\frac{1}{\lambda} m_0 \in P^f_M(A) \), and so \(m_0 \in \lambda P^f_M(A) \). \(\square \)

For a subset \(K \) of \(X \), let us define \(\widehat{K}_F \) be such that
\[
\widehat{K}_F = \left\{ A \subset X : F_K(A) = \sup_{a \in A} f(a) \right\}.
\]

Using this we prove the following theorem characterizing \(f \)-simultaneously proximinal sets.

Theorem 7.

Let \(K \) be a subspace of \(X \). Then \(K \) is \(f \)-simultaneously proximinal in \(X \) if and only if every \(f \)-bounded subset \(A \) of \(X \) can be written as \(B + k \) for some \(k \in K \) and \(B \in \widehat{K}_F \).

Proof:

Suppose the condition hold. Let \(A \subset X \) be an \(f \)-bounded subset of \(X \). By assumption there exists \(k_0 \in K \) and \(B \in \widehat{K}_F \) such that \(A = B + k_0 \). Hence \(A - k_0 \in \widehat{K}_F \). Therefore,
\[
\sup_{a \in A} |f(a - k_0)| = F_K(A - k_0) \\
= \inf_{k \in K} \sup_{a \in A} |f(a - k_0 - k)| \\
= \inf_{k' \in K} \sup_{a \in A} |f(a - k')| = F_K(A).
\]

Hence \(K \) is \(f \)-simultaneously proximinal.

Conversely, suppose \(K \) is \(f \)-simultaneously proximinal and \(A \subset X \) be an \(f \)-bounded subset of \(X \). Then there exists \(k_0 \in K \) such that
\[
\sup_{a \in A} |f(a - k_0)| = \inf_{k \in K} \sup_{a \in A} |f(a - k)| = \inf_{k' \in K} \sup_{a \in A} |f(a - (k' + k_0))|.
\]
where \(k = k' + k_0 \). Hence,

\[
\sup_{a \in A} |f(a - k)| = F_K(A - k_0).
\]

Consequently \(A - k_0 \in \widehat{K}_F \). So there exists \(B \in \widehat{K}_F \) such that \(A - k_0 = B \) or \(A = B + k_0 \).

Theorem 8.

Let \(f \) be a real valued continuous function on \(X \) such that \(x = 0 \) iff \(f(x) = 0 \). If \(K \) is \(f \)-simultaneously proximinal, then \(K \) is \(f \)-closed.

Proof:

Let \(\{k_m\} \) be a sequence of \(K \) and \(x \in X \), such that \(f(x - k_m) \to 0 \). Taking \(A = \{x\} \), we have

\[
F_K(A) = \inf_{k \in K} \sup_{a \in A} |f(a - k)| \\
\leq |f(x - k_0)| \to 0.
\]

Since \(K \) is \(f \)-simultaneously proximinal, there exists \(k_0 \in K \) such that

\[
F_K(A) = |f(x - k_0)| = 0.
\]

Hence, \(f(x - k_0) = 0 \). Using assumption it follows that \(x - k_0 = 0 \). Hence \(x = k_0 \in K \) and \(K \) is \(f \)-closed.

3. \(f \)-Simultaneous Approximation in Quotient Space

Let \(M \) a closed subspace of \(X \). Then a function \(\tilde{f} : (X/M) \to \mathbb{R} \) can be defined as follows:

\[
\tilde{f}(x + M) = \inf_{y \in M} |f(x + y)|.
\]

Proposition 9.

Let \(M \) a closed subspace of \(X \). If \(A \) is \(f \)-bounded in \(X \), then \(A/M \) is \(\tilde{f} \)-bounded in \(X/M \).

Proof:

Let \(A \) be an \(f \)-bounded subset in \(X \). Since \(M \) is a subspace, for \(x + M \in A/M \)

\[
|\tilde{f}(x + M)| = \inf_{y \in M} |f(x + y)| \leq |f(x)|.
\]

Consequently since \(A \) is an \(f \)-bounded subset of \(X \), it follows that \(A/M \) is \(\tilde{f} \)-bounded in \(X/M \).
Theorem 10.
Let M a closed subspace of X. If B is \tilde{f}-bounded in X/M, then there exists an f-bounded subset A of X such that $B = A/M$.

Proof:
Let B be a non empty \tilde{f}-bounded in X/M. Let $C = \bigcup_{b \in B} B$. Claim $B = \{ \bar{x} = x + M : x \in C \}$.
Indeed if $b \in B$, then $b = x_b + M$ for some $x_b \in X$. But M is a subspace. Thus $x_b = x_b + 0 \in x_b + M \subset C$. Hence $b = x_b + M \in \{ \bar{x} = x + M : x \in C \}$ and $B \subseteq \{ \bar{x} = x + M : x \in C \}$.
Similarly if $x \in C$, then $x \in b_x + M$ for some $b_x + M \in B$. This implies that $x = b_x + m_x$ for some $m_x \in M$. Hence $x + M = b_x + m_x + M = b_x + M \in B$. Therefore $\{ \bar{x} = x + F : x \in C \} \subseteq B$.

Now clearly C is not bounded unless M is trivial. Note that B is \tilde{f}-bounded. So there exists $K > 0$ such that $|\tilde{f}(b)| \leq K$ for all $b \in B$. Consider the set $A = \{ x \in C : |f(x)| \leq K + 1 \} \subseteq C$.
Now we claim that for all $x \in C$,
$$\bar{x} \cap A = (x + M) \cap A \neq \phi.$$
Given $x \in C$. Since
$$|\tilde{f}(x + M)| = \inf_{m \in M} |f(x + m)| \leq K,$$
there exists $m_x \in M$ such that $|f(x + m_x)| < K + 1$. But $x + m_x \in x + M \subseteq C$. Hence $x + m_x \in (x + M) \cap A \neq \phi$. Claim $B = A/M$. Since $A \subseteq C$, we have $A/F \subseteq \{ \bar{x} = x + F : x \in C \} = B$.
To show the other inclusion, let $b \in B = \{ \bar{x} = x + M : x \in C \}$. Then $b = x_b + M$ for some $x_b \in C$. But $(x_b + M) \cap A \neq \phi$. Thus there exists $a \in A$ such that $a = x_b + m_a \in x_b + M$.
Therefore $b = x_b + M = (x_b + m_a) + M = a + M \in A/M$. Hence $B \subseteq A/M$. Consequently $A/M = B$. □

Theorem 11.
Let K be a subspace of X and M be a closed f-proximinal subspace of K. If k_0 is a point of f-best simultaneous approximation to $A \subset X$ in K, then $k_0 + M$ is an \tilde{f}-best simultaneous approximation to A/M in K/M.

Proof:
Suppose $k_0 + M$ is not \tilde{f}-best simultaneous approximation to A/M in K/M. Then for at least $k \in K$, say $k_1 \in K$, we have
$$\sup_{a \in A} \tilde{f}(a - k_1 + M) < \sup_{a \in A} \tilde{f}(a - k_0 + M).$$

Since
$$\sup_{a \in A} \tilde{f}(a - k_0 + M) = \sup_{a \in A} \inf_{m \in M} |f(a - k_0 + m)| \leq \sup_{a \in A} |f(a - k_0)|,$$
we have
\[
\sup_{a \in A} \tilde{f}(a - k_1 + M) = \sup_{a \in A} \inf_{m \in M} |f(a - k_1 + m)| < \sup_{a \in A} |f(a - k_0)|.
\]

But \(M \) is \(f \)-proximinal, so for some \(m_0 \in M \) we have
\[
\sup_{a \in A} |f(a - k_1 + m_0)| = \sup_{a \in A} \inf_{m \in M} |f(a - k_1 + m)| < \sup_{a \in A} |f(a - k_0)|.
\]

Since \(M \subset K \), it follows that \(k_1 - m_0 \in K \). Therefore \(k_0 \) not \(f \)-best simultaneous approximation to \(A \) in \(K \), which is a contradiction. \(\square \)

\textbf{Corollary 12.}

Let \(K \) be a subspace of \(X \) and \(M \) is a closed \(f \)-proximinal subspace of \(K \). If \(K \) is \(f \)-simultaneously proximinal in \(X \), then \(K/M \) is \(\tilde{f} \)-simultaneously proximinal in \(X/M \).

\textbf{Proof:}

Let \(B \) be an \(\tilde{f} \)-bounded subset of \(X/M \). Then by Theorem 10, there exists \(f \)-bounded subset \(A \subset X \) such that \(B = A/M \). If \(K \) is \(f \)-simultaneously proximinal in \(X \), then there exists at least \(k_0 \in K \) such that \(k_0 \) is \(f \)-best simultaneous approximation to \(A \) in \(K \). By Theorem 11, \(k_0 + M \) is an \(\tilde{f} \)-best simultaneous approximation to \(A/M \) in \(K/M \), so \(K/M \) is \(\tilde{f} \)-simultaneously proximinal in \(X/M \). \(\square \)

\textbf{Theorem 13.}

Let \(K \) be a subspace of \(X \) and \(M \) is a closed \(f \)-proximinal subspace of \(K \). If \(K/M \) is \(\tilde{f} \)-simultaneously proximinal in \(X/M \), then \(K \) is \(f \)-simultaneously proximinal in \(X \).

\textbf{Proof:}

Let \(A \) be an \(f \)-bounded subset of \(X \). By Proposition 9, \(A/M \) is \(\tilde{f} \)-bounded in \(X/M \). Since \(K/M \) is \(\tilde{f} \)-simultaneously proximinal in \(X/M \), then there exists \(k_0 + M \in K/M \) such that \(k_0 + M \) is \(\tilde{f} \)-best simultaneous approximation to \(A/M \) from \(K/M \), so

\[
\sup_{a \in A} \tilde{f}(a - k_0 + M) = \inf_{k \in K} \sup_{a \in A} \tilde{f}(a - k + M)
= \inf_{k \in K} \sup_{a \in A} |f(a - k + m)|
\leq \inf_{k \in K} \sup_{a \in A} |f(a - k + m)|
= \inf_{k \in K} \sup_{a \in A} |f(a - k')|,
\]

where, \(k' = k - m \in K \). Since \(M \) is \(f \)-proximinal, there exists \(m_0 \in M \) such that
\[
\sup_{a \in A} |f(a - k_0 - m_0)| = \sup_{a \in A} \inf_{m \in M} |f(a - k_0 + m)| = \sup_{a \in A} \tilde{f}(a - k_0 + M). \tag{2}
\]

Consequently, combining (1) and (2) since \(M \subset K\), it follows that

\[
\sup_{a \in A} |f(a - k_0 - m_0)| \leq \inf_{k' \in K} \sup_{a \in A} |f(a - k')| \leq \sup_{a \in A} |f(a - k_0 - m_0)|
\]

Hence,

\[
\sup_{a \in A} |f(a - k_0 + m_0)| = \inf_{k' \in K} \sup_{a \in A} |f(a - k')|
\]

So \(k_0 + m_0\) is an \(f\)-best simultaneous approximation to \(A\) from \(K\) and \(K\) is \(f\)-simultaneously proximinal in \(X\). □

Theorem 14.

Let \(W\) and \(M\) be two subspaces of \(X\). If \(M\) is a closed \(f\)-proximinal subspace of \(X\), then the following assertions are equivalent:

1. \(W/M\) is \(\tilde{f}\)-simultaneously proximinal in \(X/M\),
2. \(W + M\) is \(f\)-simultaneously proximinal in \(X\).

Proof:

(1) \(\Rightarrow\) (2). Since \((W + M)/M = W/M\) and \(M\) are \(f\)-simultaneously proximinal, using Theorem 13, it follows that \(W + M\) is \(f\)-simultaneously proximinal in \(X\).

(2) \(\Rightarrow\) (1). Since \(W + M\) is \(f\)-simultaneously proximinal and \(M \subseteq W + M\), by Corollary 12, \((W + M)/M = W/M\) is simultaneously \(f\)-proximinal. □

Theorem 15.

Let \(K, M\) be two subspaces of \(X\) such that, \(M \subset K\). If \(M\) is closed \(f\)-simultaneously proximal in \(X\) and \(K\) is \(f\)-simultaneously Chebyshev in \(X\), then \(K/M\) is \(\tilde{f}\)-simultaneously Chebyshev in \(X/M\).

Proof:

Suppose not. Then there exists \(A\), \(f\)-bounded subset of \(X\) such that \(A/M \in X/M\) is \(\tilde{f}\)-bounded and \(k_1 + M, k_2 + M \in \mathcal{P}_{f_k/m}(A/M)\) such that \(k_1 + M \neq k_2 + M\). Thus \(k_1 - k_2 \notin M\). Since \(M\) is an \(f\)-simultaneously proximal in \(X\), then

\[
\mathcal{P}_{f_{k_1}}(A - k_1) \neq \phi, \text{ and } \mathcal{P}_{f_{k_2}}(A - k_2) \neq \phi.
\]
Let $m_1 \in P_M^f(A - k_1)$, and $m_2 \in P_M^f(A - k_2)$. By Theorem 13, $k_1 + m_1$ and $k_2 + m_2$ are f-best simultaneous approximations to A from K. Since K is f-simultaneously Chebyshev in X, then $k_1 + m_1 = k_2 + m_2$ and hence $k_1 - k_2 = m_1 - m_2 \in M$, which is a contradiction. □

Definition 16.

A subset K of X is called f-quasi-simultaneously Chebyshev if $P_K^f(A)$ is non empty and f-compact set in X, for all f-bounded subsets of X.

Theorem 17.

Let M be a closed f-simultaneously proximinal subspace of X and K is f-quasi-simultaneously Chebyshev of X such that $M \subset K$. Then K/M is \tilde{f}-quasi-simultaneously Chebyshev in X/M.

Proof:

Since K is f-simultaneously proximinal in X, by Corollary 12, K/M is \tilde{f}-simultaneously proximinal in X/M. Let B be an \tilde{f}-bounded subset of X/M. Then, by Theorem 10, $B = A/M$ for an f-bounded subset A of X. If $(k_n + M)$ a sequence in $P_{K/M}^f(A/M)$, by the proof of Theorem 13, for every n, there exists $m_n \in M$ such that $k_n + m_n = k'_n \in P_K^f(A)$. But since M is a subspace, we have

$$k'_n + M = k_n + m_n + M = k_n + M.$$

Since K is f-quasi-simultaneously Chebyshev in X, the sequence $\{k_n\}$ has a subsequence $\{k_{n_i}\}$ such that $f(k_{n_i} - k_0) \to 0$ for some $k_0 \in P_K^f(A)$. But

$$\tilde{f}(k_{n_i} - k_0 + M) \leq |f(k_{n_i} - k_0)| \to 0.$$

Therefore,

$$\tilde{f}(k_{n_i} - k_0 + M) \to 0$$

and

$$\tilde{f}((k_{n_i} + M) - (k_0 + M)) \to 0.$$

Hence, $P_{K/M}^f(A/M)$ is \tilde{f}-compact and K/M is \tilde{f}-quasi-simultaneously Chebyshev. This complete the proof. □

Definition 18.

A topological vector space X is said to have the f- property if every f-bounded sequence in X has an f-convergent subsequence, where f is a real valued continuous function on X.

Note that the space $X = l^2$ has the f-property for every projection $f : X \to \mathbb{R}$, and if $f(x) = \|x\|$, then every finite dimensional Banach space has the f-property.

Proposition 19.

Let f be an absolutely homogeneous subadditive continuous real valued function on a topological vector space X and K be an f-closed subspace of X. Then for any f-bounded subset A of X, $P^f_K(A)$ is f-closed.

Proof:

Let K be an f-closed subspace of X and A be an f-bounded subset of X. If $\{k_m\}$ is a sequence in $P^f_K(A)$ and $x \in X$ such that $f(k_m - x) \to 0$, then $x \in K$ since K is f-closed. Further

$$\inf_{k \in K} \sup_{a \in A} |f(a - k)| = \sup_{a \in A} |f(a - k_m)|$$

$$= \sup_{a \in A} |f((a - x) - (k_m - x))|$$

$$\geq \sup_{a \in A} ||f(a - x)| - |f(k_m - x)|| .$$

Taking the limit as $m \to \infty$, we get

$$\inf_{k \in K} \sup_{a \in A} |f(a - k)| \geq \sup_{a \in A} |f(a - x)| .$$

Consequently,

$$\inf_{k \in K} \sup_{a \in A} |f(a - k)| = \sup_{a \in A} |f(a - x)| .$$

Hence $x \in P^f_K(A)$ and $P^f_K(A)$ is f-closed. □

Theorem 20.

Let f be a real valued sub-additive continuous function on a topological vector space X that has the f-property and M be a closed subspace of X. If W is a subspace of X such that $W + M$ is f-closed, then the following assertions are equivalent:

(1) W/M is \tilde{f}-simultaneously quasi-Chebyshev in X/M.

(2) $W + M$ is f-simultaneously quasi-Chebyshev in X.

Proof:

(1) \Rightarrow (2) Since M is f-simultaneously proximinal by Theorem 14, $W + M$ is f-simultaneously proximinal in X. Let A be an arbitrary f-bounded set in X. Then $P^f_{W + M}(A) \neq \emptyset$. Now to show that $P^f_{W + M}(A)$ is f-compact, we need to show that every sequence in $P^f_{W + M}(A)$ has an f-convergent subsequence. Let $\{g_n\}_{n=1}^{\infty}$ be an arbitrary sequence in $P^f_{W + M}(A)$. Then by Theorem 11, for each $n > 1$, $g_n + M \in P^f_{(W + M)/M}(A/M)$. Since $P^f_{(W + M)/M}(A/M)$ is \tilde{f}-compact, one
can choose \(g_0 \in W + M \) with \(g_0 + M \in P_{(W + M) / M}^f (A / M) \) and \(\{ g_{n_k} + M \}_{k=1}^\infty \) is \(\tilde{f} \)-convergent to \(g_0 + M \) for some subsequence \(\{ g_{n_k} + M \}_{k=1}^\infty \) of \(\{ g_n + M \}_{n=1}^\infty \). That means,

\[
\tilde{f} (g_0 - g_{n_k} + M) = \inf_{m \in M} |f (g_0 - g_{n_k} - m)| \to 0.
\]

Now, since \(M \) is \(f \)-proximinal in \(X \), there exists \(m_{n_k} \in M \) such that \(m_{n_k} \in P_M^f (g_0 - g_{n_k}) \), for every \(k \geq 1 \), and hence

\[
|f (g_0 - g_{n_k} - m_{n_k})| = \inf_{m \in M} |f (g_0 - g_{n_k} - m)|.
\]

Therefore,

\[
\lim_{k \to \infty} f (g_0 - g_{n_k} - m_{n_k}) = 0.
\]

On the other hand, \(\{ g_{n_k} \}_{k=1}^\infty \) is an \(f \)-bounded sequence because \(g_n \in P_{W + M}^f (A) \). In fact \(|f (g_n)| \leq 2\sup_{a \in A} |f(a)| \). Since \(M \) has the \(f \)-property, without loss of generality, we may assume that for some \(m_0 \in M \), \(f (m_{n_k} - m_0) \to 0 \). Let \(g' = g_0 - m_0 \). Then, \(g' \in W + M \) and

\[
f (g' - g_{n_k}) = f (g_0 - m_0 - g_{n_k}) \\
\leq f (g_0 - g_{n_k} - m_{n_k}) + f (m_{n_k} - m_0),
\]

\(\forall \ k \geq 1 \). Thus \(\lim_{k \to \infty} f (g' - g_{n_k}) = 0 \). Since \(\{ g_{n_k} \}_{k=1}^\infty \in P_{W + M}^f (A) \), for every \(k \geq 1 \), and \(P_{W + M}^f (A) \) is \(f \)-closed, since \(W + M \) is \(f \)-closed by Proposition 19, we conclude that \(g' \in P_{W + M}^f (A) \). Hence \(P_{W + M}^f (A) \) is \(f \)-compact.

(2) \(\Rightarrow \) (1) Since \(M \) and \(W + M \) are \(f \)-simultaneously proximinal and \(M \subseteq W + M \), then \((W + M) / M = W / M \) is \(\tilde{f} \)-simultaneously proximinal in \(X / M \).

Now, let \(A \) be an arbitrary \(f \)-bounded set in \(X \). Then \(P_{W / M}^f (A / M) \) is non-empty. So from the hypothesis we have \(W + M \) is \(f \)-simultaneously quasi-Chebyshev in \(X \), and hence \(P_{W + M}^f (A) \) is \(f \)-compact in \(X \). Using Theorem 11, we conclude that

\[
P_{(W + M) / M}^f (A / M) = \pi \left(P_{W + M}^f (A) \right),
\]

where \(\pi : X \to X / M, \pi (x) = x + M, \) is continuous. Consequently \(P_{W / M}^f (A / M) \) is \(\tilde{f} \)-compact. Therefore, \(W / M \) is \(f \)-simultaneously quasi-Chebyshev in \(X \). \(\square \)

Note that Theorem 20 is still true if the restriction \(W + M \) is \(f \)-closed is replaced by the condition that the function \(f (x) = 0 \) if and only if \(x = 0 \) and use Theorem 8 to prove that \(W + M \) is \(f \)-closed.
4. Conclusions

In this paper we introduce and study the concept of f-simultaneous approximation of a nonempty subset K of Hausdorff topological vector space X, existence and uniqueness as a generalization to the problem of simultaneous approximation in the sense that if the function f is taken to be the usual norm, the problem is turned out to be precisely the problem of best approximation in the usual sense. Further we obtain some results regarding f-simultaneous approximation in the quotient space.

REFERENCES