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Abstract 

 

This work is devoted to investigating the influence of diffusion thermo effect on hydromagnetic 

heat and mass transfer oscillatory flow of a micropolar fluid over an infinite moving vertical 

permeable plate in a saturated porous medium in the presence of transverse magnetic field and 

chemical reaction. The dimensionless equations are solved analytically using perturbation 

technique. The effects of the various fluid flow parameters entering into the problem on the 

velocity, microrotation, temperature and concentration fields within the boundary layer are 

discussed with the help of graphs. Also the local skin-friction coefficient, the wall couple stress 

coefficient, and the rates of heat and mass transfer coefficients are derived and shown in graphs. 

Comparison of the obtained numerical results is made with existing literature and is found to be 

in good agreement. 
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1.  Introduction 

 

The theory of micropolar fluids originally developed by Eringen (1964, 1966, 1972) has been a 

popular field of research in recent years.  Micropolar fluids are those consisting of randomly 

oriented particles suspended in a viscous medium, which can undergo a rotation that can affect 

the hydrodynamics of the flow, making it a distinctly non-Newtonian fluid. Eringen’s theory has 

provided a good model for studying a number of complicated fluids, such as colloidal fluids, 

polymeric fluids and blood: they have a non-symmetrical stress tensor. Raptis (2000) analyzed 

the boundary layer of micropolar fluids and their applications were considered by Ariman et al. 

(1973). 

 

The unsteady hydrodynamic free convection flow of a Newtonian and polar fluid has been 

investigated by Helmy (1998). El-Hakien et al. (1999) studied the effect of the viscous and joule 

heating on MHD free convection flows with variable plate temperatures in a micropolar fluid. In 

many chemical engineering processes a chemical reaction between a foreign mass and the fluid 

does occur. These processes take place in numerous industrial applications, such as the polymer 

production, the manufacturing of ceramics or glassware, the food processing Cussler (1998), and 

so on. Chaudhary and Abhaykumar (2008) studied the effects of chemical reactions on MHD 

micropolar fluid flow past a vertical plate in slip-flow regime. Chambre and Young (1958) have 

analyzed a first order chemical reaction in the neighborhood of a horizontal plate. Das et al. 

(1994) has studied the effects of homogeneous first order chemical reaction on the flow past an 

impulsively started infinite vertical plate with uniform heat flux and mass transfer. Heat and 

mass transfer effects on unsteady magnetohydrodynamic free convection flow near a moving 

vertical plate embedded in a porous medium was presented by Das and Jana (2010). Bakr (2011) 

presented an analysis on MHD free convection and mass transfer adjacent to a moving vertical 

plate for micropolar fluid in a rotating frame of reference in the presence of heat generation 

/absorption and chemical reaction. Mahmoud (2010) analyzed the effects of slip and heat 

generation/absorption on MHD mixed convective flow of a micropolar fluid over a heated 

stretching surface. Hayat (2011) studied the effects of heat and mass transfer on the mixed 

convective flow of a MHD micropolar fluid bounded by a stretching surface using Homotopy 

analysis method. Mansour (2007) discussed an analytical study on the MHD flow of a 

micropolar fluid due to heat and mass transfer through a porous medium bounded by an infinite 

vertical porous plate in the presence of a transverse magnetic field in slip-flow regime. 

The Diffusion-thermo (Dufour) effect was found to be of a considerable magnitude such that it 

cannot be ignored as described by Eckert and Drake (1972) in their book. Dufour effect has been 

referred to as the heat flux produced by a concentration gradient. The Soret and Dufour effects 

are important for intermediate molecular weight gases in coupled heat and mass transfer in 

binary systems, often encountered in chemical process engineering and also in high speed 

aerodynamics. Postelnicu (2004) studied numerically the influence of a magnetic field on heat 

and mass transfer by natural convection from vertical surfaces in porous media considering Soret 

and Dufour effects. Alam and Rahman (2006) discovered the Dufour and Soret effect on 

unsteady MHD flow in a porous medium. Olajuwon (2007) examined convection heat and mass 

transfer in a hydromagnetic flow of a second grade fluid past a semi-infinite stretching sheet in 

the presence of thermal radiation and thermo-diffusion. Soret and Dufour effects on mixed 

convection in a non-Darcy porous medium saturated with micropolar fluids were studied by 
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Srinivasacharya and Ram Reddy (2011). Reena and Rana (2009) investigated double-diffusive 

convection in a micropolar fluid layer heated and soluted from below saturating a porous 

medium. Very recently, Prakash (2016) investigated the porous medium and diffusion-thermo 

effects on unsteady combined convection magneto hydrodynamics boundary layer flow of 

viscous electrically conducting fluid in the presence of first order chemical reaction and thermal 

radiation. 

 

A mathematical model for the steady thermal convection heat and mass transfer in a micropolar 

fluid saturated Darcian porous medium in the presence of significant Dufour and Soret effects 

and viscous heating was presented by Rawat and Bhargava (2009). Hayat and Qasim (2010) 

studied heat and mass transfer on unsteady MHD flow in micropolar fluid with thermal radiation. 

Rashad et al. (2009) studied the heat and mass transfer oscillatory flow of a micropolar fluid over 

a vertical permeable plate. Seddeeket al. (2009) investigated the analytical solution for the effect 

of radiation on the flow of a magneto-micropolar fluid past a continuously moving plate with 

suction and blowing. Srinivasacharya and Upendar (2013) analyzed the flow, heat and mass 

transfer characteristics of the mixed convection on a vertical plate in a micropolar fluid in the 

presence of Soret and Dufour effects. Olajuwon and Oahimire (2013) investigated the effects of 

thermo-diffusion and thermal radiation on unsteady heat and mass transfer of free convective 

MHD micropolar fluid flow bounded by a semi- infinite porous plate in a rotating frame under 

the action of transverse magnetic field with suction. 

 

The main object of the present investigation is to study the effects of diffusion-thermo and first 

order homogeneous chemical reaction on micropolar fluid flow over a vertical permeable plate in 

a porous medium.  

 

2.  Mathematical Formulation 

 

An unsteady, two-dimensional incompressible laminar free convection flow of a viscous, 

electrically-conducting micropolar fluid over an infinite vertical porous moving permeable plate 

in a saturated porous medium has been considered. A uniform magnetic field of strength 𝐵0is 

applied normal to the surface and the induced magnetic field effect is neglected. The 𝑥∗ −axis is 

taken along the planar surface in the upward direction and the 𝑦∗ −axis is taken to be normal to 

it. Since the plate is infinite, the flow variables are functions of 𝑦∗ and the time 𝑡∗ only. Initially, 

the fluid as well as the plate is at rest, but for time 𝑡 > 0 the whole system is allowed to move 

with a constant velocity. At 𝑡 = 0, the plate temperature and concentration are suddenly raised to 

𝑇𝑤 and 𝐶𝑤, and maintained constant thereafter. 

 

In the presence of chemical reaction and Diffusion thermo effects the dimensional governing 

equations for the flow are 

 

    
*

*
0

v

y





,        (1) 



AAM: Intern. J., Vol. 11, Issue 2 (December 2016)     707 

 

 

     
* * 2 * *

*

* * *2 *

2
* *0

1

2

,

r r T C

r

u u u w
v v v v g T T g C C

t y y y

B v v
u u

K

 





 

   
       

   


          

(2) 

    

* * 2 *
* *

* * *2
( )

w w w
j v

t y y
 

  
 

  
,            (3) 

* * 2 * 2
*

* * *2 *2

m T

s p

D KT T T C
v

t y y C C y


    
   

    
,           (4) 

 
2

* *
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C C C
v D C C

t y y
 

   
    
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.           (5) 

 

Here, u
*
and v

* 
are the components of velocity in the x

*
 and y

* 
respectively and w

* 
is the 

component of the angular velocity normal to the x
*
y

* 
plane, T  is temperature of the fluid, and C

is the mass concentration of the species in the flow. , , , , , ,r T Cv v g   *

1, , , , ,  ,K j D  

,

*

1 , ,m p sD C C and Tk  are the density, kinematic viscosity, kinematic rotational viscosity, 

acceleration due to gravity, coefficient of volumetric thermal expansion of the fluid, coefficient 

of volumetric mass expansion of the fluid, electrical conductivity of the fluid, permeability of the 

medium, micro inertia per unit mass, spin gradient viscosity, thermal diffusivity, molecular 

diffusivity and the dimensional chemical reaction parameter, coefficient of mass diffusivity, 

specific heat at constant pressure, concentration susceptibility, and thermal diffusion parameter, 

respectively. 

 

The boundary conditions for the problem are 

* *
*

* * *

1 *
, , ( ) ,n t

p w

u
u u w n T T T T e

y
 


     


 

                   
* * *( ) 0n t

wC C C C e aty    ,            (6) 

     
* * *, 0,0 ,u w T T C C as y      . 

   

The following comment should be made about the boundary condition used for the micro 

rotation term: when 1 0,n  we obtain from the boundary condition stated in Equation (6), for the 

micro rotation,
* 0w  . This represents the case of concentrated particle flows in which the 

microelements close to the wall are not able to rotate, Jena and Mathur (1982). The case 

corresponding to 1  0.5n   results in the vanishing of the anti-symmetric part of the stress tensor 

and represents weak concentrations, Ahmadi (1976), and suggests that the particle spin is equal 

to the fluid vorticity at the boundary for fine particle suspensions. As suggested by Peddieson 

(1972), the case corresponding to 1  1n   is representative of turbulent boundary layer flows. 

Thus, for 1  1n  , the particles are not free to rotate near the surface. However, as 1  0.5n   and 1, 

the microrotation term gets augmented and induces flow enhancement. 
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On integrating the continuity Equation (1), we get  

 
*

0v V  ,            (7) 

where 0V  is the suction velocity, which has a non-zero positive constant. 

 

We introduce the following dimensionless quantities  

* * * * * 0 0
0 0 0

0
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12 2

0
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, , , ,

2 ( )

M T w

p s w

K V j v D K C C
K Df

v V vC C T T

 
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 





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 
         (8) 

 

where 0U  is a scale of free stream velocity and   denotes the dimensionless viscosity ratio in 

which 𝞚 is the coefficient of vertex viscosity. 1Pr, , , , ,,,T CSc M KGr Gr  and Df  are the Prandtl 

number, Schmidt number, Magnetic field parameter, thermal and solutal Grashof number, 

permeability parameter, the dimensionless chemical reaction parameter, and Dufour number, 

respectively. 

Using Equation (8), Equations (1) - (7) reduce to the following initial-value problem: 

                                      

2

2

1
(1 ) 2 T C

u u u w
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t y y y K


   
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2

2

1w w w
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 
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      (10)

 

                                                    

2 2

2 2

1
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Df

t y y y
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  

   
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       (11)

 

                                                      

2

12

1

t y Sc y

  
 

  
  
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,

    

       (12) 

 
with the following boundary conditions: 

                                                        1, , 1 , 0,nt

p

u
u U w n e at y

y
 


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
 

                                                       0, 0, 0, 0,u w as y      .        (13)
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3.  Method of solution 

 
The closed form solutions to Equations (9) to (12) are difficult to obtain and so we assume that 

the unsteady flow is superimposed on the mean steady flow so that in the neighborhood of the 

plate, we use the following linear transformations for small values of  see Kim and Lee (2003): 

                                                           
2

0 1( , ) ( ) ( ) ( ),ntu y t u y e u y O   

    
           

2

0 1( , ) ( ) ( ) ( ),ntw y t w y e w y O   

   

 

2

0 1( , ) ( ) ( ) ( ),nty t y e y O      

   
                                                           

2

0 1( , ) ( ) ( ) ( ).nty t y e y O               (14) 

 
After substituting the expressions (14) into Equations (9) - (13), we get 

0 0 0 0 0 0

1
(1 ) ( ) 2 ,T Cu u M u Gr Gr w

K
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1
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
   


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       (16) 

0 0 0,w w  
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with the boundary conditions 
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Solving Equations (15) - (22) with the boundary conditions (23) and substituting the solutions 

into Equations (14), we get 
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5 64 4Pr Pr
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5 6( ) .
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                        (27)  

 

The local friction coefficient, local wall Couple stress coefficient, local Nusselt number, and 

local Sherwood number are important physical quantities for this type of heat and mass transfer 

problem. These are defined as follows: 

 

The wall shear stress may be written as 
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Therefore, the local skin-friction coefficient is 
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The wall couple stress can be written as: 
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Thus, the local couple stress coefficient is  
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The rate of heat transfer at the surface in terms of the local Nusselt number can be written as: 
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where 0Rex

xV

v
  is the local Reynolds number. 

 

The rate of mass transfer at the surface in terms of the local Sherwood number is given by 
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4.  Results and discussion 

The analytical solutions are obtained for concentration, temperature, velocity and microrotaion 

for different values of fluid flow parameters such as Schmidt number Sc , chemical reaction 

parameter Kr , Dufour number Df , magnetic field parameter M , permeability parameter K , 

thermal Grashof number TGr  and mass Grashof number CGr which are presented in figures 1-13. 

Throughout the calculations the parametric values are chosen as 1, 0.1, 0.1,t n  

1, 4,TGr   2, 0.5,C pGr U 
1 0.5,Pr 0.71, 0.1.n     

 

 
Figure 1. Velocity Profiles for different values of Dufour number Df  with 

10.2, 0.5, 2, 5.Sc M K   
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Figure 2. Velocity Profiles for different values of magnetic field parameter M with 

10.2, 0.5, 0.5, 5.Sc Df K     

 
Figure 3. Velocity Profiles for different values of permeability parameter K with 

10.2, 0.5, 0.5, 2.Sc Df M   
 

 

Figure 4. Velocity Profiles for different values of thermal Grashof number TGr with 

10.2, 0.5, 0.5, 2, 5.Sc Df M K      
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Figure 5. Velocity Profiles for different values of Mass Grashof number CGr for 

10.2, 0.5, 0.5, 2, 5.Sc Df M K      

 
Figure 6. Micro rotation profiles for different values Dufour number Df with 

10.2, 0.5, 2, 5.Sc M K   
 

 
Figure 7. Temperature Profiles for different various values of Dufour number Df with

12, 0.2.Sc    
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Figure 8. Concentration profiles for different values of Chemical reaction parameter 1 with

0.6.Sc   

 
Figure 9. Concentration profiles for different values of Schmidt number Sc with

1 0.2. 
 

 
Figure 10. Local friction factor for various values of Dufour number Df against 

time t with 12, 0.1,Sc   0.01, 2, 2,M K    1, 2, 1, 0.5.T CPr Gr Gr Up     
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Figure 11. Local friction factor for various values of Porous permeability parameter K against 

time, t  with 12, 0.1,Sc   2, 0.5,M Df  1, 2, 1, 0.5.T CPr Gr Gr Up   
 

 
Figure 12. Local Skin friction coefficient for various values of Magnetic field parameter M 

against time t  with 12, 0.1,Sc   5, 0.5,K Df  1, 2, 1, 0.5.T CPr Gr Gr Up     

 

Figure 13. Local Nusselt number for various values of Dufour number Df against 

time t with 10.6, 0.1,Sc   5.K   
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Table 1. Comparison of the present result of Nusselt number and Sherwood number with 

Modather (2009) for various values of t when 1 0.5, 0.1, 2, 1,T Cn n Gr Gr   

15, 0.1, 0.5, 0.01, 0, 1,K Up Du         2,Pr 1, 2.M Sc    

Modather Results (2009) Present Results 

t  1RexNu 

 
1RexSh 

 
1RexNu 

 
1RexSh 

 
0 1.00887 1.91217 1.0089 1.9122 

1 1.00981 1.91404 1.0098 1.9140 

3 1.01198 1.91838 1.0120 1.9184 

5 1.01463 1.92369 1.0146 1.9237 

10 1.02412 1.94267 1.0241 1.9427 

20 1.06556 2.02555 1.0656 2.0256 

30 1.17822 2.25086 1.1782 2.2509 

40 1.48445 2.86332 1.4844 2.8633 

50 2.31687 4.52816 2.3169 4.5282 

 

 

Table 2. Comparison of the present result of Nusselt number and Sherwood number with 

Modather (2009) for various values of Pr , n , Sc and 1 when 1 0.5, 2, 1,T Cn Gr Gr  

5, 0.5, 0.01, 0, 1,K Up Du       2.M   

 

 

 

 

 

 

 

 

 

 

 
 

The effect of Dufour number on velocity, microrotation and temperature are shown Figures 1, 6 

and 7, respectively. It is seen that the fluid velocity and temperature increase with increasing 

values of Df. Physically, the Dufour term that appears in the temperature equation measures the 

 Modather Results(2009) Present Results 

Pr  n  Sc  
1  1RexNu 

 
1RexSh 

 
1RexNu 

 
1RexSh 

 
0.7 0.1 - - 0.70640 - 0.7055 - 

1 0.1 - - 1.00981 - 1.0098 - 

1 0 - - 1.01000 1.91337 1.0100 1.9134 

1 0.05 - - 1.00996 1.91374 1.0100 1.9137 

1 0.1 - - 1.00981 1.91404 1.0098 1.9140 

1 0.15 - - 1.00948 1.91426 1.0095 1.9143 

- 0.1 1 - - 0.89530 - 0.8953 

- 0.1 2 - - 1.91404 - 1.9140 

- 0.1 2 0 - 2.02094 - 2.0209 

- 0.1 2 0.1 - 1.91404 - 1.9140 

- 0.1 2 0.2 - 1.79264 - 1.7926 
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contribution of concentration gradient to thermal energy flux in the flow domain. It has a vital 

role in the ability to increase the thermal energy in the boundary layer. The microrotation 

decreases with increase in Dufour number. 

The effect of the magnetic parameter M  on the boundary layer velocity is shown in Figure 2. It 

is observed that increasing magnetic field parameter reduces the velocity. This is due to an 

increase in the Lorentz force which acts against the flow if the magnetic field if applied in the 

normal direction. 

 

Figure 3 illustrates the effects of permeability of the porous medium parameter K on fluid 

velocity.  It is clear that as permeability parameter  increases, the velocity increases along the 

boundary layer thickness which is expected since when the holes of porous medium become 

larger, the resistivity of the medium may be neglected and hence the momentum boundary layer 

thickness increases. 

 

The velocity profiles in the boundary layer for various values of the thermal Grashof number 

TGr are shown in Figure 4. It is noticed that an increase in TGr  leads to a rise in the fluid velocity 

due to enhancement in buoyancy force. Here, the positive values of TGr  correspond to cooling of 

the plate. In addition, it is observed that the velocity increases sharply near the wall as TGr  

increases and then decays to the free stream value.  

 

Figure 5 depicts the velocity profiles for different values of solutal Grashof number CGr . The 

velocity distribution attains a distinctive maximum value in the vicinity of the plate and then 

decreases properly to approach a free stream value. It is expected that the fluid velocity increases 

and the peak value becomes more distinctive due to increase in the buoyancy force represented 

by CGr . 

 

Figure 8 displays the effect of chemical reaction parameter 1  on species concentration. From 

this figure it is understood that an increase in 1  will suppress the concentration of the fluid. 

Higher values of 1  amount to a fall in the chemical molecular diffusivity. They are obtained by 

species transfer. An increase in 1  will suppress species concentration. The concentration 

distribution decreases at all points of the flow field with the increase in the reaction parameter. 

 

Effect of the Schmidt number Sc on concentration is displayed in Figure 9. Here, both the 

concentration profiles and the boundary layer thickness decrease when the Schmidt number Sc  

increases. From a physical point of view, the Schmidt number is dependent on mass diffusion D  

and an increase in Schmidt number corresponds to a decrease in mass diffusion and the 

concentration profile reduces. 

 

Figures 10 and 13 show the variation of Skin friction coefficient and heat transfer rate on Dufour 

number against time t . It is noticed that the friction factor increases with an increase in the 

Dufour number while the heat transfer rate decreases with the increasing values of Dufour 

number. 
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The effects of magnetic field parameter and porous permeability parameter on skin friction 

coefficient against time t  are shown in Figures 11 and 12. It is clear that the Skin friction 

coefficient at the wall increases with increase in Porous permeability parameter while the 

opposite trend is observed with the increasing values of Magnetic field parameter. 

Tables 1 and 2 show the comparison of Nusselt number and Sherwood number for various values 

of flow parameters t , Pr , n Sc and 
1 respectively. On comparison it is observed that the results of 

the present study agree well with the results accomplished by Modather (2009).  

 

5.  Conclusions 
 

The effects of Diffusion-thermo and chemical reaction on MHD free convection heat and mass 

transfer flow of an incompressible, micropolar fluid along an infinite-vertical porous moving 

permeable plate embedded in a saturated porous medium have been studied. A perturbation 

method is used in finding the solution.  The results are discussed through graphs and tables for 

different values of fluid flow parameters. In addition, the results obtained showed that these 

parameters have significant influence on the fluid flow, heat and mass transfer. The conclusions 

are summarized as follows: 

 The translational velocity distribution across the boundary is increased with increasing 

values of , ,T CK Gr Gr , and Df   while they show opposite trend with an increasing 

values of M . 

 The magnitude of microrotation decreases with increasing value of Df . 

 Inclusion of Dufour effect is to increase the skin-friction, while an opposite trend is 

noticed for Nusselt number. 

 The temperature profiles increase with an increasing value of Dufour number, and it 

reaches the maximum peak value near the plate. Thus, the boundary layer thickness 

increases for higher values of the Dufour number. 

 An increase in the chemical reaction parameter implies decrease in the species 

concentration. 
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