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Abstract

In this paper we prove convergence of the method of successive approximations used to approx-
imate the solution of nonlinear two-dimensional Volterra-Fredholm integral equations and define
the notion of numerical stability of the algorithm with respect to the choice of the first iteration.
Also we present an iterative procedure to solve such equations. Finally, the method is illustrated
by solving some examples.
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1. Introduction

In recent years topics of fuzzy integral equations have been developed and have attracted growing
interest, in particular in relation to fuzzy control. Fuzzy equations are used to model uncertainty
mathematical models. Mathematical models used in many problems of physics, biology, chem-
istry, engineering and in other areas are based on these equations (Puri et al., 1986; Gasilova et
al., 2014).

The main problems that arise out of fuzzy integral equations are: existence and uniqueness of the
solution, and the construction of numerical methods of approximation. Fixed point theorems like
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Darbo’s theorem and Banach’s fixed point principle are powerful tools used to prove existence
and uniqueness of the solution for fuzzy integral equations (Balachandran and Prakash, 2002;
She, 2016; Balachandran et al., 2005; Mihai et al., 2015). Most of these theorems are based
on compactness of operators on a suitable Banach space. In this study use the function f(s, t)

satisfying the Lipschitz condition.

Many real-world engineering and mechanics problems can be modeled as two-dimensional fuzzy
integral equations. It is important to develop convergence and unique analysis for fuzzy integral
equations. Much research has been undertaken on analyzing existence and uniqueness of solution
and developing numerical algorithms for solving one-dimensional integral equations (Gonga et
al., 2015; Macarioa and Sanchis, 2015; Tron Thuana et al., 2014; Behzadi et al., 2012), but in
two-dimensional cases very little has been done (Sadatrasoul and Ezzati, 2016).

In the present article, in order to obtain the convergence and uniqueness of solution for two-
dimensional fuzzy Volterra- Fredholm integral equations (2D-FVFIE), we use the Picard method
to solve 2D-FVFIE of the form:

f̃(s, t) = g̃(s, t) + λ1

∫ t

0

∫ s

0

U1(s, t, x, y, f̃(x, y))dxdy

+λ2

∫ T2

0

∫ T1

0

U2(s, t, x, y, f̃(x, y))dxdy,

(1)

and

f̃(s, t) = g̃(s, t) +

∫ s

0

∫
Ω

U(s, t, x, y, f̃(x, y))dydx, D = [0, T ]× Ω, (2)

where f̃(s, t) is an unknown function which should be determined, and Ω is a closed subset of
Rn, n = 1, 2, 3. The functions U1(s, t, x, y, f̃) and U2(s, t, x, y, f̃) are given functions defined on

W = {(s, t, x, y, f̃) : 0 ≤ x ≤ s < T1, 0 ≤ y ≤ t < T2},

S = {(s, t, x, y, f̃) : 0 ≤ x ≤ s < T, t ∈ Ω, y ∈ Ω}.

For convenience, we put

U1(s, t, x, y, f̃) = k1(s, t, x, y)[f̃(s, t)]p1 ,

U2(s, t, x, y, f̃) = k2(s, t, x, y)[f̃(s, t)]p2 ,

where p1 and p2 are positive integers. Moreover g̃(s, t) is a known function defined on D.
Since any finite interval [a, b] can be transformed to [0, 1] by linear maps, it is supported that
[0, T1) = (0, T2) = [0, 1), without any loss of generality.
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2. Preliminaries

An arbitrary fuzzy number with an ordered pair of functions (u(r), ū(r)), 0 ≤ r ≤ 1, which
satisfy the following requirements is represented (Mihai and Popescu, 2015).

Definition 1.

A fuzzy number is a function u : R→ [0, 1] satisfying the following properties:

(a) u is upper semicontinuous on R,
(b) u(x) = 0 outside of some interval [c, d],
(c) there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing on [c, a],

decreasing on [b, d] and u(x) = 1 for each x ∈ [a, b], and
(d) u is fuzzy convex set (that is u(λx+ (1− λ)y) ≥ min {u(x), u(y)}, ∀x, y ∈ R, λ ∈ [0, 1]).

The set of all fuzzy numbers is denoted by RF . Any real number a ∈ R can be interpreted as a
fuzzy number a = χ{a} and therefore R ⊂ RF . Also, the neutral element with respect to ⊕ in
RF is denoted by 0̃ = χ{0}.

A fuzzy number u in parametric form is a pair (u, ū), of functions u(r), ū(r), 0 ≤ α ≤ 1, which
satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right continuous
at 0,

2. ū(r) is a bounded non-increasing left continuous function in (0, 1], and right continuous at 0,
3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with bounded r-level
intervals. This means that if ν ∈ E, then the r-level set

[ν]r = {s|ν(s) ≥ r}, 0 < r ≤ 1,

is a closed bounded interval which is denoted by

[ν]r = [ν(r), ν̄(r)]. (3)

For arbitrary u = (u, ū), ν = (ν, ν̄) and k ≥ 0, addition (u + ν) and multiplication by k as
(u+ ν) = u(r) + ν(r), (u+ ν) = ū(r) + ν̄(r), (ku(r)) = ku(r), ku(r) = kū(r) are defined.

Each y ∈ R can be regarded as a fuzzy number y defined by

ỹ(k) =

{
1 t = y ,

0 t 6= y .
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Definition 2.

The Hausdorff distance between fuzzy numbers is given by D : E × E → R+ ∪ {0},

D(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |ū(r)− v̄(r)|}. (4)

It is easy to see that D is a metric in E and has the following properties (Puri et al., 1986).

(a) D(u⊕ w, ν ⊕ w) = D(u, ν),∀u, ν, w ∈ E,
(b) D(k � u, k � ν) = |k|D(u, ν), ∀ ∈ R, u, ν ∈ E,
(c) D(u⊕ ν, w ⊕ e) ≤ D(u,w) +D(ν, e),∀u, ν, w, e ∈ E,
(d) (D,E) is a complete metric space.

Definition 3.

Let f : R→ E be a fuzzy valued function. If for arbitrary fixed t0 ∈ R and ε > 0, exists δ > 0

such that
| t− t0 |< δ ⇒ D(f(t), f(t0)) < ε,

f is said to be continuous (Salahshour and Allahviranloo, 2012).

Theorem 1.

Let R0 = [x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ Rf and f : R0 → Rf be continuous such that
‖f(x, y)‖f ≤M for all (x, y) ∈ R0 and f satisfies the Lipschitz condition D(f(x, y), f(x, z)) ≤
L. D(y, z), ∀(x, y), (x, z) ∈ R0 and D(y, z) ≤ q. If there exists d > 0 such that for x ∈ (x0, x0+d)

the sequence given by y0(x) = y0, yn+1(x) = y0 − (−1) �
∫ x

x0
f(t, yn(t))dt is defined for

any n ∈ N, then the fuzzy initial value problem ý = f(x, y), y(x0) = y0 has two solutions
y, y : [x0, x0 + r]→ B(y0, q) where r = min{p, q

M
, q
M1
, d} and the successive iterations in{

y0(x) = y0,

yn+1(x) = y0 ⊕
∫ x

x0
f(t, yn(t))dt,

and {
y0(x) = y0,

yn+1(x) = y0 − (−1)�
∫ x

x0
f(t, yn(t))dt,

converge to these two solutions, respectively (Bede and Gal, 2005).

3. Convergence and unique analysis

In this section, we prove the existence and uniqueness of the solution and convergence of the
method by using the following assumptions.

We can write successive iterations (by using Picard method) as follows:

f̃n+1(s, t) = g̃(s, t) + λ1

∫ t

0

∫ s

0

k1(s, t, x, y)[f̃n(s, t)]P1dxdy

+λ2

∫ 1

0

∫ 1

0

k2(s, t, x, y)[f̃n(s, t)]P2dxdy,

(5)
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and

f̃n+1(s, t) = g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, x, y)[f̃n(s, t)]Pdydx. (6)

Let f̃(s, t), g̃(s, t) : [0, T1]× [0, T2]→ RF be continuous functions.

D(f̃1, f̃2) = sup
{
|f̃1(s, t)− f̃2(s, t)|, (s, t) ∈ [0, T1]× [0, T2]

}
0 ≤ t < T2, 0 ≤ s < T1. (7)

Also, we suppose the nonlinear operators f̃(s, t)p1 and f̃(s, t)p2 satisfy Lipschitz conditions with

|(f̃1(s, t))p1 − (f̃2(s, t))p1| = |f̃1(s, t)− f̃2(s, t)||(f̃1(s, t))p1−1

+(f̃1(s, t))p1−2(f̃2(s, t)) . . .+ ˜f2(s, t)|.

Now we have Lp
1 > 0

|(f̃1(s, t))p1−1 + (f̃1(s, t))p1−2(f̃2(s, t))1 + . . .+ f̃2(s, t)| 6 Lp1
1 ∃L1 > 0.

Thus,

| f̃1(s, t))p1 − (f̃2(s, t))p1 |6 LP1
1 |f̃1(s, t)− f̃2(s, t)|.

After applying the sup, we have

sup |(f̃1(s, t))p1 − (f̃2(s, t))p1| 6 Lp1
1 sup |f̃1(s, t)− f̃2(s, t)|.

Using equation (7), then it is easy to write

D(f̃1(s, t)p1 , f̃2(s, t)p1) 6 Lp1
1 D(f̃1(s, t), f̃2(s, t)), L1 > 0,

D(f̃1(s, t)p2 , f̃2(s, t)p2) 6 LP2
2 D(f̃1(s, t), f̃2(s, t)), L2 > 0,

∃M1 > 0 s.t |λ1k1(s, t, x, y)| 6M1,

∃M2 > 0 s.t |λ2k2(s, t, x, y)| 6M2.

Then,
α = (M1L

P
1 +M2L

p2
2 ).

The proof of equation (2) is similar.

D(f̃1(s, t)p, f̃2(s, t)p) 6 LpD(f̃1(s, t), f̃2(s, t)), L > 0.

Let 0 < α < 1 and ∃M > 0 s.t | k(s, t, x, y) |≤M then α = MLp.

Theorem 2.

Equations (1) and (2) have unique solution when 0 < α ≤ 1, respectively.

Proof:

Let f̃1(s, t) and f̃2(s, t) be two different solutions of equation (1),
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D(f̃1(s, t), f̃2(s, t)) = D(g̃(s, t) + λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃1(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃1(s, t))p2dxdy,

g̃(s, t) + λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃2(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃2(s, t))p2dxdy)

= D(λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃1(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃1(s, t))p2dxdy,

λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃2(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃2(s, t))p2dxdy)

6 D(λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃1(s, t))p1dxdy,

λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃2(s, t))p1dxdy)

+D(λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃1(s, t))p2dxdy,

λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃2(s, t))p2dxdy)

6 (M1L
p1
1 +M2L

p2
2 )D(f̃1(s, t), f̃2(s, t))

= αD(f̃1(s, t)), f̃2(s, t)),

from which we get (1−α)D(f̃1(s, t)), f̃2(s, t)) ≤ 0. Since 0 < α < 1, then D(f̃1(s, t)), f̃2(s, t)) =

0 implies f̃1(s, t) = f̃2(s, t).

Now for equation (2), we have

D(f̃1(s, t), f̃2(s, t)) = D(g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, s, y)(f̃1(s, t))pdydx,

g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, s, y)(f̃2(s, t))pdydx)

= D

(∫ s

0

∫ 1

0

k(s, t, x, y)(f̃1(s, t))pdydx,

∫ s

0

∫ 1

0

k(s, t, x, y)(f̃2(s, t))pdydx

)
≤ MLPD(f̃1(s, t), f̃2(s, t)) = αD(f̃1(s, t), f̃2(s, t)),

from which we get (1− α)D(f̃1(s, t)), f̃2(s, t)). Since 0 < α < 1, then D(f̃1(s, t)), f̃2(s, t)) = 0

implies f̃1(s, t) = f̃2(s, t) and completes the proof. �
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Theorem 3.

The solution f̃n(s, t) by using Picard method converges to the exact solution of the equations
(1) and (2), 0 < α ≤ 1.

Proof:

We prove equation (1) as follows:

D(f̃n+1(s, t), f̃(s, t)) = D(g̃(s, t) + λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃n(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃n(s, t))p2dxdy,

g̃(s, t) + λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃(s, t))p2dxdy)

= D(λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃n(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃n(s, t))p2dxdy,

λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃(s, t))p1dxdy

+λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃(s, t))p2dxdy)

6 D(λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃n(s, t))p1dxdy,

λ1

∫ t

0

∫ s

0

K1(s, t, x, y)(f̃(s, t))p1dxdy) +

D(λ2

∫ 1

0

∫ 1

0

K2(s, tx, y)(f̃n(s, t))p2dxdy,

λ2

∫ 1

0

∫ 1

0

K2(s, t, x, y)(f̃(s, t))p2dxdy)

6 (M1L
p1
1 +M2L

p2
2 )D(f̃n(s, t), f̃(s, t))

= αD(f̃n(s, t), f̃(s, t)).

Since 0 < α < 1, then D(f̃n(s, t), f̃(s, t))→ 0 as n→∞. Therefore, f̃n(s, t)→ f̃(s, t).

The proof of equation (2) is similar to previous theorems.
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We have:

D(f̃n+1(s, t), f̃(s, t)) = D(g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, s, y)(f̃n(s, t))pdydx,

g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, s, y)(f̃(s, t))pdydx)

= D

(∫ s

0

∫ 1

0

k(s, t, x, y)(f̃n(s, t))pdydx,

∫ s

0

∫ 1

0

k(s, t, x, y)(f̃(s, t))pdydx

)
≤ MLPD(f̃n(s, t), f̃(s, t)) = αD(f̃n(s, t), f̃(s, t)).

Since 0 < α < 1, then D(f̃n(s, t), f̃(s, t))→ 0 as n→∞. Therefore, f̃n(s, t)→ f̃(s, t). �

4. Solving 2D-FVFIE

In this section, we present an effective method for solving 2D-FVFIE by using the Picard method.

Consider the following 2D-FVFIE:

f̃(s, t) = g̃(s, t) + λ1

∫ t

0

∫ s

0

k1(s, t, x, y)[f̃(x, y)]p1dxdy

+λ2

∫ 1

0

∫ 1

0

k2(s, t, x, y)[f̃(x, y)]p2dxdy,

(8)

and

f̃(s, t) = g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, x, y)[f̃(x, y)]pdydx. (9)

Now, we can write successive iterations (by using the Picard method) as follows:

f̃n+1(s, t) = g̃(s, t) + λ1

∫ t

0

∫ s

0

k1(s, t, x, y)[f̃n(x, y)]p1dxdy

+λ2

∫ 1

0

∫ 1

0

k2(s, t, x, y)[f̃n(x, y)]p2dxdy,

(10)

and

f̃n+1(s, t) = g̃(s, t) +

∫ s

0

∫ 1

0

k(s, t, x, y)[f̃n(x, y)]pdydx. (11)

We present the Picard method in several steps.

Step 1. Set n→ 0

Step 2. Calculate the recursive relations (Bede and Gal, 2005; Mikaeilvand and Khakrangin,
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2012) and (Bede and Gal, 2005; Gasilova et al., 2014).
Step 3. If D(f̃n+1, f̃n) < ε, where ε is a given positive value then go to step 4, else n→ n+ 1

and go to step 2.
Step 4. Print f̃n as the approximation of the exact solution.

Since in this paper we consider fuzzy integral equations, according to Definition 1 equation (Bede
and Gal, 2005; Behzadi et al., 2012) and (Bede and Gal, 2005; Salahshour and Allahviranloo,
2012) can be represented in the form f̃(s, t) = (f̃(s, t), f̃(s, t)) of functions f̃(s, t, r), f̃(s, t, r),

0 ≤ r ≤ 1, where

f̃(s, t, r) = g̃(s, t, r) + λ1

∫ t

0

∫ s

0

k1(s, t, x, y)[f̃(x, y, r)]p1dxdy

+λ2

∫ 1

0

∫ 1

0

k2(s, t, x, y)[f̃(x, y, r)]p2dxdy,

f̃(s, t, r) = g̃(s, t, r) + λ1

∫ t

0

∫ s

0

k1(s, t, x, y)[f̃(x, y, r)]p1dxdy

+λ2

∫ 1

0

∫ 1

0

k2(s, t, x, y)[f̃(x, y, r)]p2dxdy.

Also equation (Bede and Gal, 2005; Salahshour and Allahviranloo, 2012) can be written as

f̃(s, t, r) = g̃(s, t, r) +

∫ s

0

∫ 1

0

k(s, t, x, y)[f̃(x, y, r)]pdydx,

and

f̃(s, t, r) = g̃(s, t, r) +

∫ s

0

∫ 1

0

k(s, t, x, y)[f̃(x, y, r)]pdydx.

5. Numerical examples

In order to illustrate the effectiveness of the method proposed in this paper, two numerical
examples are presented.

Example 1.

Consider the following fuzzy Volterra-Fredholm integral equation

f̃n+1(s, t) = g̃(s, t)−
∫ s

0

∫ 1

0

t2e−yf̃n(x, y)dydx, 0 ≤ s < 1, 0 ≤ t < 1.

The general form of the equation is
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f̃
n+1

(s, t, r) = g̃(s, t, r)−
∫ s

0

∫ 1

0

t2e−yf̃
n
(x, y, r)dydx,

and

f̃n+1(s, t, r) = g̃(s, t, r)−
∫ s

0

∫ 1

0

t2e−yf̃n(x, y, r)dydx,

where

g̃(s, t, r) = s2et − 2

3
s3t2(r2 + r),

g̃(s, t, r) = s2et − 2

3
s3t2(4− r3 − r).

The exact solution is:

f̃
n
(s, t, r) = s2et(r2 + r),

and

f̃n(s, t, r) = s2et(4− r3 − r).

Let

f̃
0
(s, t, r) = g̃(s, t, r) = s2et − 2

3
s3t2(r2 + r).

Setting n→ 0, we have

f̃1(s, t, r) = s2et − 2

3
s3t2(r2 + r)−

∫ s

0

∫ 1

0

t2e−yf̃0(x, y, r)dxdy

= (s2et − s3t2 − 5

6
s4t2e−1 +

1

3
s4t2)(r2 + r).

Setting n→ 1, we have:

f̃2(s, t, r) = s2et − 2

3
s3t2(r2 + r)−

∫ s

0

∫ 1

0

t2e−yf̃1(x, y, r)dxdy

= (s2et − s3t2 +
1

2
s4t2 − 2

15
s5t2 − 5

4
s4t2e−1 − 5

6
s5e−2 +

1

3
s5t2e−1 +

1

3
s5e−1)

×(r2 + r).
...
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Similarly,

f̃1(s, t, r) = (s2et − s3t2 − 5

6
s4t2e−1 +

1

3
s4t2)(4− r3 − r),

f̃2(s, t, r) = (s2et − s3t2 +
1

2
s4t2 − 2

15
s5t2 − 5

4
s4t2e−1 − 5

6
s5e−2 +

1

3
s5t2e−1 +

1

3
s5e−1)

×(4− r3 − r).
...

If D(f̃
n+1

, f̃
n
) < ε and D(f̃n+1, f̃n) < ε, where ε is a given positive value and 0 ≤ s < 1,

0 ≤ t < 1, then f̃n = (f̃
n
, f̃n) is the approximation of the exact solution, else n → n + 1 and

calculate the recursive relation.

Example 2.

Consider the following two-dimensional fuzzy Volterra-Fredholm integral equation

f̃n+1(s, t) = g̃(s, t)−
∫ s

0

∫ 1

0

(2y − 1)exf̃n(x, y)dydx, 0 6 s < 1, 0 6 t < 1,

where

g̃(s, t)(r) =

(
sin s+ t− 1

6
es +

1

6
(3 + r), sin s+ t− 1

6
es +

1

6
(5− r)

)
.

The exact solution is:

f̃(s, t, r) = sin s+ t− 1

3
es +

1

3
(3 + r),

¯̃f(s, t, r) = sin s+ t− 1

3
es +

1

3
(5− r).

This equation can be written as:

f̃
n+1

(s, t, r) = g̃(s, t, r)−
∫ s

0

∫ 1

0

(2y − 1)exf̃
n
(x, y, r)dydx,

and

¯̃fn+1(s, t, r) = ¯̃g(s, t, r)−
∫ s

0

∫ 1

0

(2y − 1)ex ¯̃fn(x, y, r)dydx,

where
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g̃(s, t, r) = sin s+ t− 1

6
es +

1

6
(3 + r),

and

¯̃g(s, t, r) = sin s+ t− 1

6
es +

1

6
(5− r).

Let

f̃
0
(s, t, r) = g̃(s, t, r) = sin s+ t− 1

6
es +

1

6
(3 + r).

Setting n −→ 0, we have:

f̃
1
(s, t, r) = sin s+ t− 1

6
es +

1

6
(3 + r)−

∫ s

0

∫ 1

0

(2y − 1)ex(sinx+ y − 1

6
ex +

1

6
)(3 + r)dx

= (sin s+ t− 1

3
es +

1

3
)(3 + r).

Letting n −→ 1, then:

f̃
2
(s, t, r) = sin s+ t− 1

6
es +

1

6
(3 + r)−

∫ s

0

∫ 1

0

(2y − 1)ex(sinx+ y − 1

3
ex +

1

3
)(3 + r)dydx

= (sin s+ t− 1

3
es +

1

3
)(3 + r).

...

with the same procedure we can infer that the approximate solution

f̃(s, t, r) = (sin s+ t− 1

3
es +

1

3
)(3 + r),

is the same as the exact solution.

Similarly,

¯̃f1(s, t, r) = (sin s+ t− 1

3
es +

1

3
)(5− r),

¯̃f2(s, t, r) = (sin s+ t− 1

3
es +

1

3
)(5− r).

...
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So, the approximate solution f̃(s, t, r) = (f̃(s, t, r), ¯̃f(s, t, r)) is the same as the exact solution.

6. Conclusion

In this paper, the convergence and unique analysis of solutions for two-dimensional Volterra-
Fredholm integral equations were studied. Two theorems for convergence and unique analysis of
solutions were given and proved. Also the Picard method has been shown to solve effectively,
easily, and accurately these equations.
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