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Abstract  
 

The present paper deals with profit modelling and comparison between two dissimilar 

systems under two types of failures based on Markovian Birth-Death process. Type I failure 

is minor in the sense that the work is in a reduced capacity whereas type II failure is major 

because it causes the entire system failure. Both systems consist of four subsystems arranged 

in series-parallel with three possible states: working with full capacity, reduced capacity and 

failed state. The systems are attended to by two repairmen in tandem. Through the transition 

diagrams, systems of differential difference equations are developed and solved recursively to 

obtain the steady-state availability, busy period of repair men, and profit function. Profit 

matrices for each subsystem have been developed for different combinations of failure and 

repair rates. Furthermore, we compare the profit for the two systems and find that system I is 

more profitable than system II. 
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1. Introduction 

 
The industrial and manufacturing systems comprise of large complex engineering systems 

arranged either in series, parallel, parallel-series or series-parallel. Examples of these systems 

are feeding, crushing, refining, steam generation, evaporation, crystallization, fertilizer plant, 

crystallization unit of a sugar plant, piston manufacturing plant, etc. Reliability, availability 
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and profit are vital in any successful industries and manufacturing settings. Profit may be 

enhancing using highly reliable system or subsystem. If the reliability and availability of a 

system is improved, the production and associated profit will also increase. This can be 

achieved by maintaining reliability and availability at the highest order through maintenance. 

Large volumes of literature exist on the issue of predicting performance evaluation of various 

industrial and manufacturing systems. Aggarwal et al. (2014) used Markov model for the 

analysis of urea synthesis of a fertilizer plant. Damcese and Helmy (2012) presented 

reliability study with mixed standby components. Gupta and Tewari (2011) analyzed the 

reliability and availability of thermal power plant. Gupta et al. (2007) presented the reliability 

and availability of serial processes of plastics pipe manufacturing plant. Gupta et al. (2005) 

discussed the mission reliability and availability of flexible polymer powder production 

system. Gupta et al. (2007) presented reliability parameters of a powder generating system. 

Kadiyan et al. (2012) presented the reliability and availability of uncaser system of brewery 

plant. Khanduja et al. (2012) presented the steady-state behaviour and maintenance planning 

of bleaching system of a paper plant. Kaur (2014) discussed the reliability, availability and 

maintainability of an industrial process. Kaur et al. (2013a) discussed the numerical solution 

of differential difference equations in reliability engineering. Kaur (2013c) discussed the use 

of corrective maintenance data for performance analysis of textile industry. Kaur (2013b) 

discussed the performance analysis of an industrial system under corrective and preventive 

maintenance. Kumar el al. (2014) discussed stochastic modelling of a concrete mixture plant 

with preventive maintenance.  Kumar and Mudgil (2014) discussed the availability analysis 

of the ice cream making unit of a milk plant. Kumar and Tewari (2011) discussed the 

mathematical modelling and performance optimization of CO2 cooling system of a fertilizer 

plant. Kumar et al. (2011) discussed the performance modelling of furnace draft air cycle in a 

thermal plant. Kumar and Lata (2012) presented the reliability evaluation of condensate 

system using fuzzy Markov model.  

 

Pandey et al. (2011) discussed the reliability analysis of a series and parallel network using 

triangular intuitionistic fuzzy sets. Ram (2010) discussed the reliability measures of three-

state complex system. Shakuntla (2012) presented reliability modelling and analysis of some 

process industrial systems. Sachdeva et al. (2008a) discussed availability modelling of 

screening system of a paper plant. Sachdeva et al. (2008b) studied the behaviour of a biscuit 

making plant using Markov regenerative modelling. Singh and Goyal (2013) presented a 

methodology to study the steady-state behaviour of repairable mechanical biscuit making 

plant. Tewari et al. (2012) computed the steady-state availability and performance 

optimization for the crystallization unit of sugar plant using genetic algorithm. Tuteja and 

Tuteja (1992a) studied the cost benefit analysis of a two server two unit system with different 

types of failure. Tuteja and Tuteja (1992b) presented profit evaluation of one server system 

with partial failure subject to random inspection. Tuteja and Malik (1992) presented 

reliability and profit analysis of two single unit models with three modes and different repair 

policies. Tuteja et al. (1991) analyzed two unit system with partial failure and three types of 

repairs. Tuteja et al. (1991) discussed the stochastic behaviour of a two unit system with two 

types of repairman and subject to random inspection. 

 

The problem considered in this paper is different from those discussed by the authors above. 

The purpose of this paper is threefold. The first purpose is to develop the explicit expressions 

for the steady-state availability, busy period of repair men, and profit function. In this paper, 

we studied two dissimilar systems subject to two types of failures. The second purpose is to 

compare these systems in terms of their profit. The third is to capture the effect of both failure 

and repair rates on profit based on assumed numerical values given to the system parameters.  
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The organization of the paper is as follows. Section 2 presents the model’s description and 

assumptions. Section 3 presents formulations of the models. Numerical examples are 

presented and discussed in Section 4.  Finally, we make a concluding remark in Section 5. 

 

Symbols 

 

                           Indicates the system is in full working state 

 

                           Indicates the system is in failed state 

 

                              Indicates the system in reduced capacity state 

           A, B, C, D: Represent full working state of subsystem 

                 a, b, c, d: Represent failed state of subsystem 

1 2 3 4, , ,      Represent failure rates of subsystems A, B, C, D 

1 2 3 4, , ,    :    represent repair rates of subsystems A, B, C, D 

( ), 0,1,2,...,16iP t i  : Probability that the system is in state iS  at time t 

( )k

VA  : Steady state availability of the system , 1,2k   

1( )k

PB  : Steady state busy period of repairman due to minor failure 

2 ( )k

PB  : Steady state busy period of repairman due to major failure 

0C :  Total revenue generated from system using 

1C :   Cost incurred due to type I failure 

2C : Cost incurred due to type II failure 

( )k

FP  :          Profit 

 

2. The Model’s Description and Assumptions 
  

Model description of System I 

The system consists of four dissimilar subsystems arranged in series-parallel as follows: 

1. Subsystem A: It is a single unit and has no standby unit. Its failure is catastrophic 

and causes complete failure of the system. 
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2. Subsystem B: Consists of two active parallel units. Failure of one unit causes the 

system to work in reduced capacity. Complete failure occurs when both units fail. 

3. Subsystem C: Consists of two active parallel units. Failure of one unit causes the 

system to work in reduced capacity. Complete failure occurs when both units fail. 

4. Subsystem D: It is a single unit and has no standby unit. Its failure is catastrophic 

and causes severe effect on the system performance; that is, a complete failure of the 

system. 

 

 
Figure 1. Reliability block diagram of system I 

 

 

 

 

 
Figure 2. Transition diagram of system I 

 

 State 0 indicate full working capacity 

 States 1 – 3 indicate reduced capacity (type I failure) 

 States 4 – 15 indicate failed states (type II failure) 
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Model description of System II 

 

The system consists of four dissimilar subsystems arranged in series-parallel as follows: 

 

1. Subsystem A: It is a single unit and has no standby unit. Its failure is complete 

failure of the system. 

2. Subsystem B: Consists of three active parallel units. Failure of one unit, causes the 

system to work in reduced capacity. Complete failure occurs when both units fail. 

3. Subsystem C: It is a single unit and has no standby unit. Its failure is catastrophic 

and causes severe effect on the system performance: that is, complete failure of the 

system. 

4. Subsystem D: It is a single unit and has no standby unit. Its failure is catastrophic 

and causes severe effect on the system performance; that is, complete failure of the 

system. 

 
Figure 3. Reliability block diagram of system II 

 

 

 

 

 

 

 

 

 

 

 

   

   

 

 

 

 

Figure 4: Transition diagram of system II 
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 State 0 indicates full working capacity. 

 States 1 – 2 indicate reduced capacity (type I failure). 

 States 3 – 12 indicate failed states (type II failure). 

 

Assumptions   

The assumptions used in the model’s development are as follows: 

1. At any given time the system is either in operating state, reduced capacity or in failed 

state. 

2. Subsystems/units do not fail simultaneously. 

3. The system is exposed to two types of failures minor and major failure. 

4. Minor failure forces the system to work in reduced capacity states (there is no system 

failure) whereas major failure brings about system failure. 

5. The system is attended to by two repairmen in tandem. 

6. Standby units in the same subsystem are of the same nature and capacity as the active 

units. 
 

3. Models Formulation 

Steady State availability, busy periods and profit of System I 

The following differential difference equations associated with the transition diagram in 

Figure 2 of the system are formed using Markov birth-death process: 

 
4

0 2 1 3 2 1 4 4 5

1

( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t

dt
    



 
     

 


                                                 

(1) 

4

2 1 3 3 1 6 4 7 2 8 2 0

1

( ) ( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t P t

dt
      



 
       

 


                          (2)

 

4

3 2 2 3 1 9 3 10 4 11 3 0

1

( ) ( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t P t

dt
      



 
       

 


                        

(3)

4

2 3 3 1 12 3 13 4 14 2 15 3 1 2 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t P t P t

dt
        



 
         

 


 

(4)

( ) ( ), 1,2,3,4, 0,1,2,3, 4,5,6,7,...,15,m i m j

d
P t P t m j i

dt
 

 
     

                 

(5)  

 

with initial conditions  

 

1 0,
( )

0 0.
i

i
P t

i


 

                                                                                                        

(6)
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In the steady state, the derivatives of the state probabilities in Equations 1 – 5 are set to zero 

and solving the resulting equations recursively, we obtained the following steady state 

probabilities: 

 

1 2 0( ) ( ),P X P   6 1 2 0( ) ( ),P X X P   11 3 4 0( ) ( ),P X X P    

2 3 0( ) ( ),P X P   7 2 4 0( ) ( ),P X X P   12 1 2 3 0( ) ( ),P X X X P    

3 2 3 0( ) ( ),P X X P   2

8 2 0( ) ( ),P X P   2

13 2 3 0( ) ( ),P X X P    

4 1 0( ) ( ),P X P   9 1 3 0( ) ( ),P X X P   14 2 3 4 0( ) ( ),P X X X P    

5 4 0( ) ( ),P X P   2

10 3 0( ) ( ),P X P   2

15 2 3 0( ) ( ).P X X P    

The probability of full working state 0 ( )P   is determined by using the normalizing condition 

below: 

 

0 1 2 3 4 15( ) ( ) ( ) ( ) ( ) . . . ( ) 1.P P P P P P            
                                                 

(7) 

 

Substituting the values of 1( )P  - 15( )P   in terms of 0 ( )P   into the normalizing condition in 

(7) below  

 

 2

0 2 3 2 3 1 4 1 2 2 3( ) 1 ... 1.P X X X X X X X X X X         
                                       

(8) 

0

0

1
( ) ,P

d
 

                                                                                                                      

(9) 

the steady-state availability, busy period due to type I and II failure and profit function of 

system I are given below: 

 
3

1 0

0 0

( ) ( ) ,V k

k

n
A P

d

   
                                                                                                

(10) 

3
1 1
1

1 0

( ) ( ) ,k

k

n
B P

d

   
                                                                                                 

(11) 

15
1 2
2

4 0

( ) ( ) ,k

k

n
B P

d

   
                                                                                                 

(12) 

1 1 1 1

0 1 1 2 2( ) ( ) ( ) ( ),F V P PP C A C B C B      
                                                                    

(13) 

 

where   

 

     2 2

0 2 1 3 4 3 1 3 3 4 2 31 1 1 ,d X X X X X X X X X X X         

 
0 2 3 2 31 ,n X X X X   

 

1 2 3 2 3,n X X X X  
 

     2 2

2 1 4 2 3 2 3 1 2 3 4 2 31 .n X X X X X X X X X X X X           
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Steady State availability, busy periods and profit of System II
 

The following differential difference equations associated with the transition diagram in 

Figure 4 of the system are formed using Markov birth-death process: 

 
4

0 1 3 2 1 3 4 4 5

1

( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t

dt
    



 
     

 
                                                (14) 

4

2 1 2 2 1 6 4 11 3 12 2 0

1

( ) ( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t P t

dt
      



 
       

 
                      (15) 

4

2 2 1 7 3 8 2 9 4 10 2 1

1

( ) ( ) ( ) ( ) ( ) ( ),i

i

d
P t P t P t P t P t P t

dt
      



 
       

 
                      (16) 

( ) ( ), 1,2,3,4, 0,1,2,3, 3,4,5,6,7,...,12.m i m j

d
P t P t m j i

dt
 

 
     

                       

(17) 

1 0,
( )

0 0.
i

i
P t

i


 

                                                                                                          

(18) 

In the steady state, the derivatives of the state probabilities in Equations 14 – 17 are set to 

zero and solving the resulting equations recursively we obtained the following steady state 

probabilities: 

 

1 2 0( ) ( ),P X P  
   4 3 0( ) ( ),P X P   2

7 1 2 0( ) ( ),P X X P  
 

2

10 4 2 0( ) ( ),P X X P    
2

2 2 0( ) ( ),P X P  
  5 4 0( ) ( ),P X P  

 
2

8 3 2 0( ) ( ),P X X P  
 11 2 4 0( ) ( ),P X X P    

3 1 0( ) ( ),P X P  
  6 1 2 0( ) ( ),P X X P   3

9 2 0( ) ( ),P X P  
  12 2 3 0( ) ( ).P X X P    

 

The probability of full working state 0 ( )P   is determined by using the normalizing condition 

below: 

 

0 1 2 3 4 15( ) ( ) ( ) ( ) ( ) . . . ( ) 1.P P P P P P            
                     

               (19) 

 

Substituting the values of 1( )P  - 12 ( )P   in terms of 0 ( )P  into the normalizing condition in 

(19) below 
 

 2

0 2 2 1 3 4 1 2 2 3( ) 1 ... 1.P X X X X X X X X X         
                   

                       (20) 

0

1

1
( ) ,P

d
 

                                                                                                   

                 (21) 

 

The steady-state availability, busy period due to type I failure, busy period due to type II 

failure and profit function of system II are given by  

 
2

2 3

0 1

( ) ( ) ,V j

j

n
A P

d

                                                                                                     (22) 

2
2 4

1

1 1

( ) ( ) ,j

j

n
B P

d

                                                                                                     (23) 
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12
2 5
2

3 1

( ) ( ) ,k

j

n
B P

d

   
                                                                                                 

(24) 

2 2 2 2

0 1 1 2 2( ) ( ) ( ) ( ),F V P PP C A C B C B                                                                           (25) 

 

where            

                             

   2 3

1 2 2 1 3 4 21 1 ,d X X X X X X        

2

3 2 21 ,n X X   2

4 2 2 ,n X X   

   2 3

5 1 3 4 2 2 21 ,n X X X X X X     
 

1
1

1

X



 , 2

2

2

X



 , 3

3

3

X



 .

 
 

4. Numerical Examples and Discussion 
 

In this section, we numerically obtained the results for the profit for the systems using the 

failure and repair rates of Aggarwal et al. (2014). For each table the following set of 

parameter values were fixed: 0 100,000C  , 1 10,000C  , 2 15,000C  . 

 

 

Table 1. Profit matrix for subsystem A 

 
 0.35 0.4 0.45 0.5 

2

2

3

3

4

4

0.1

0.005

0.5

0.001

0.1

0.002

























 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

0.004 96876
 

95785 96888
 

95938 96898
 

96058 96907
 

96153 

0.005 96755
 

95479 96779
 

95670 96799
 

95819 96815
 

95938 

0.006 96634
 

95176 96670
 

95403 96700
 

95581 96725
 

95723 

0.007 96513
 

94873 96561
 

95138 96601
 

95344 96634
 

95510 

 

 

 

 

Table 2. Profit matrix for subsystem B 
 

 0.05 0.1 0.15 0.2 
1

1

3

3

4

4

0.4

0.005

0.5

0.001

0.1

0.002

























 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

0.004 96350 96054 96351 96068 96352 96079 96352 96087 

0.005 96338 96026 96341 96044 96342 96057 96344 96068 

0.006 96327 95999 96331 96019 96333 96036 96336 96049 

0.007 96315 95971 96320 95995 96324 96014 96327 96029 

 

 

  

1  

2  

1  

2  
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Table 3. Profit matrix for subsystem C 
 0.45 0.5 0.55 0.6 

2

2

1

1

4

4

0.1

0.005

0.4

0.005

0.1

0.002

























 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

System 

I 

System 

II 

0.0005 95653 94670 95654 94821 95655 94938 95656 95032 

0.001 95643 94371 95645 94558 95647 94704 95648 94821 

0.0015 95632 94074 95635 94297 95638 94471 95640 94611 

0.002 95621 93777 95625 94036 95629 94239 95632 94401 

 

 

Table 4. Profit matrix for subsystem D 
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System 

I 
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II 
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II 

System 
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II 

0.001 97702 96594 97714 96750 97724 96871 97733 96969 

0.002 97579 96285 97603 96478 97624 96629 97640 96750 

0.003 97456 95976 97493 96209 97523 96388 97548 96532 

0.004 97333 95670 97382 95938 97423 96147 97456 96315 

 

Table 5.  Optimal values of Profit obtained 

 

S/N 

Subsystem Maximum Profit 

 System I System II 

1 A 96907
 

96153 

2 B 96352 96087 

3 C 95656 95032 

4 D 97733 96969 

 

 

Table 1 and Figure 5 present the impact of failure and repair rates of subsystem A against the 

profit for different values of parameters 1  and 1  for both system I and II. The failure and 

repair rates of other subsystems are kept constant as can be seen in the last column of Table 1. 

It is clear from Table 1 and Figure 3 that the profit shows increasing pattern with respect to 

repair rate 1  and decreasing pattern with respect to failure rate 1  in both systems. 

However, system I tends to have more profit than system II. 

 

Table 2 and Figure 6 present the impact of failure and repair rates of subsystem B against the 

profit for different values of parameters 2  and 2  for both system I and II. The failure and 

repair rates of other subsystems are kept constant as can be seen in the last column of Table 2. 

It is clear from Table 2 and Figure 6 that the profit shows increasing pattern with respect to 

repair rate 2  and decreasing pattern with respect to failure rate 2  in both systems. System I 

tend to have more profit than system II. 

 

4  

3  

3  

4  

2  
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Table 3 and Figure 7 present the impact of failure and repair rates of subsystem C against the 

profit for different values of parameters 3  and 3  for both system I and II. The failure and 

repair rates of other subsystems are kept constant as can be seen in the last column in the 

Table 3. It is clear from Table 3 and Figure 7 that the profit shows increasing pattern with 

respect to repair rate 3  and decreasing pattern with respect to failure rate 3  in both 

systems. Here, again system I has more profit than system II. 

 

Table 4 and Figure 8 present the impact of failure and repair rates of subsystem D against the 

profit for different values of parameters 4  and 4  for both system I and II. The failure and 

repair rates of other subsystems are kept constant as can be seen in the last column of Table 4. 

It is clear from Table 4 and Figure 6 that the profit shows increasing pattern with respect to 

repair rate 4  and decreasing pattern with respect to failure rate 4  in both systems. 

However, system I tends to have more profit than system II. 

 

Table 5 helps in determining the subsystem with maximum profit. It is observed that 

subsystem D has maximum profits of 97733 and 96969 for system I and II, respectively. 

From Table 5, it is observed that the most critical subsystem as far as maintenance is 

concerned and required immediate attention is subsystem C. 

 

5. Conclusion 

 
In this paper, we analyzed two dissimilar systems, each consisting of subsystems A, B, C and 

D. Explicit expressions for steady-state availability, busy period and profit function for the 

two systems were derived and comparison between the systems was performed numerically. 

It is evident from Tables 1 - 4 and Figures 5 - 8 that the optimal system is system I. Models 

presented in this paper are important to engineers, maintenance managers and plant 

management for proper maintenance analysis, decision and safety of the system as a whole. 

The models will also assist engineers, decision makers and plant management to avoid an 

incorrect reliability assessment and consequent erroneous decision making, which may lead 

to unnecessary expenditures, incorrect maintenance scheduling and reduction of safety 

standards. 

 

Overall, based on numerical results in the Tables and Figures, it is evident that  

 

 The revenue obtained decreases with increase in failure rates. 

 The revenue is affected by the number of operating units. 

 The system availability as well as revenue of the system can be increased by adding 

more redundant units/subsystems, taking more units in the system in cold standby, 

and by increasing the repair rate. 
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Figure 5. Impact of failure and repair of subsystem A  on profit 
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Figure 6. Impact of failure and repair of subsystem B on profit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Impact of failure and repair of subsystem C on profit 
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Figure 8. Impact of failure and repair of subsystem D on profit 
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