2.8 Function Operations and Composition

Arithmetic Operations on Functions
The Difference Quotient
Composition of Functions and Domain
Operations of Functions

Given two functions f and g, then for all values of x for which both $f(x)$ and $g(x)$ are defined, the functions $f + g$, $f - g$, fg, and f/g are defined as follows.

\[
(f + g)(x) = f(x) + g(x) \quad \text{Sum}
\]
\[
(f - g)(x) = f(x) - g(x) \quad \text{Difference}
\]
\[
(fg)(x) = f(x)\,g(x) \quad \text{Product}
\]
\[
\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0 \quad \text{Quotient}
\]
Example 1

USING OPERATIONS ON FUNCTIONS

Let $f(x) = x^2 + 1$ and $g(x) = 3x + 5$. Find the following.

a. $(f + g)(1)$

Solution Since $f(1) = 2$ and $g(1) = 8$, use the definition to get

$$(f + g)(1) = f(1) + g(1) = 2 + 8 = 10$$
Example 1 USING OPERATIONS ON FUNCTIONS

Let $f(x) = x^2 + 1$ and $g(x) = 3x + 5$. Find the following.

b. $(f - g)(-3)$

Solution Since $f(-3) = 10$ and $g(-3) = -4$, use the definition to get

$$ (f - g)(-3) = f(-3) - g(-3) = 10 - (-4) = 14 $$
Example 1

USING OPERATIONS ON FUNCTIONS

Let \(f(x) = x^2 + 1 \) and \(g(x) = 3x + 5 \). Find the following.

\[c. \ (fg)(5) \]

Solution Since \(f(5) = 26 \) and \(g(5) = 20 \), use the definition to get

\[
(fg)(5) = f(5) \cdot g(5)
\]

\[= 26 \cdot 20 \]

\[= 520 \]
Example 1

USING OPERATIONS ON FUNCTIONS

Let \(f(x) = x^2 + 1 \) and \(g(x) = 3x + 5 \). Find the following.

d. \(\left(\frac{f}{g} \right)(0) \)

Solution Since \(f(0) = 1 \) and \(g(0) = 5 \), use the definition to get

\[
\left(\frac{f}{g} \right)(0) = \frac{f(0)}{g(0)} = \frac{1}{5}
\]
Example 2 USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1} \]. Find the following.

a. \((f + g)(x)\)

Solution

\[(f + g)(x) = f(x) + g(x) = 8x - 9 + \sqrt{2x - 1} \]
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \]
and
\[g(x) = \sqrt{2x - 1}. \]
Find the following.

b. \((f - g)(x)\)

Solution

\[(f - g)(x) = f(x) - g(x) = 8x - 9 - \sqrt{2x - 1} \]
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1}. \] Find the following.

c. \((fg)(x)\)

Solution

\[(fg)(x) = f(x) \cdot g(x) = (8x - 9) \sqrt{2x - 1} \]
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1} \]. Find the following.

d. \[\left(\frac{f}{g} \right)(x) \]

Solution

\[\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{8x - 9}{\sqrt{2x - 1}} \]
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1}. \] Find the following.

e. Give the domains of the functions.

Solution To find the domains of the functions, we first find the domains of \(f \) and \(g \).

The domain of \(f \) is the set of all real numbers \((-\infty, \infty)\).
Example 2

Using Operations of Functions and Determining Domains

Let

\[f(x) = 8x - 9 \quad \text{and} \quad g(x) = \sqrt{2x - 1}. \]

Find the following.

e. Give the domains of the functions.

Solution Since \(g(x) = \sqrt{2x - 1} \), the domain of \(g \) includes just the real numbers that make \(2x - 1 \) nonnegative. Solve \(2x - 1 \geq 0 \) to get \(x \geq \frac{1}{2} \). The domain of \(g \) is \(\left[\frac{1}{2}, \infty \right) \).
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1} \]. Find the following.

e. Give the domains of the functions.

Solution

The domains of \(f + g \), \(f - g \), \(fg \) are the intersection of the domains of \(f \) and \(g \), which is

\[(-\infty, \infty) \cap \left[\frac{1}{2}, \infty \right) = \left[\frac{1}{2}, \infty \right) \]
Example 2

USING OPERATIONS OF FUNCTIONS AND DETERMINING DOMAINS

Let
\[f(x) = 8x - 9 \] and \[g(x) = \sqrt{2x - 1}. \] Find the following.

e. Give the domains of the functions.

Solution The domains of \(\frac{f}{g} \) includes those real numbers in the intersection for which
\[g(x) = \sqrt{2x - 1} \neq 0; \]
that is, the domain of \(\frac{f}{g} \) is \(\left(\frac{1}{2}, \infty \right) \).
If possible, use the given representations of functions f and g to evaluate …

$$(f + g)(4), \quad (f - g)(-2), \quad (fg)(1), \quad \text{and} \quad \left(\frac{f}{g}\right)(0).$$
Example 3

EVALUATING COMBINATIONS OF FUNCTIONS

\[(f + g)(4), \quad (f - g)(-2), \quad (fg)(1), \quad \text{and} \quad \left(\frac{f}{g}\right)(0)\].

\[
\begin{align*}
(f + g)(4) &= f(4) + g(4) \\
&= 9 + 2 \\
&= 11
\end{align*}
\]

For \((f - g)(-2)\), although \(f(-2) = -3\), \(g(-2)\) is undefined because \(-2\) is not in the domain of \(g\).
Example 3

\[(f + g)(4), \quad (f - g)(-2), \quad (fg)(1), \quad \text{and} \quad \left(\frac{f}{g}\right)(0). \]

EVALUATING COMBINATIONS OF FUNCTIONS

\[y = f(x) \quad y = g(x) \]

\[f(4) = 9 \quad g(4) = 2 \]

\[= f(4) + g(4) \]

\[= 9 + 2 = 11 \]

The domains of \(f \) and \(g \) include 1, so

\[(fg)(1) = f(1) \cdot g(1) = 3 \cdot 1 = 3 \]
Example 3

EVALUATING COMBINATIONS OF FUNCTIONS

\((f + g)(4),\ (f - g)(-2),\ (fg)(1),\ \text{and}\ \left(\frac{f}{g}\right)(0)\).

\[
\begin{align*}
(f + g)(4) &= 9 + 2 = 11 \\
g(4) &= 2 \\
f(4) &= 9 \\
\end{align*}
\]

The graph of \(g\) includes the origin, so \(g(0) = 0\).

Thus, \(\left(\frac{f}{g}\right)(0)\) is undefined.
Example 3

EVALUATING COMBINATIONS OF FUNCTIONS

If possible, use the given representations of functions \(f \) and \(g \) to evaluate

\[
(f + g)(4), \quad (f - g)(-2), \quad (fg)(1), \quad \text{and} \quad \left(\frac{f}{g}\right)(0).
\]

b. \[
\begin{array}{c|c|c}
 x & f(x) & g(x) \\
 \hline
 -2 & -3 & \text{undefined} \\
 0 & 1 & 0 \\
 1 & 3 & 1 \\
 1 & 1 & \text{undefined} \\
 4 & 9 & 2 \\
\end{array}
\]

\[
f(4) = 9 \quad g(4) = 2
\]

\[
= f(4) + g(4)
\]

\[
= 9 + 2 = 11
\]

In the table, \(g(-2) \) is undefined.

Thus, \((f-g)(-2) \) is undefined.
Example 3

If possible, use the given representations of functions f and g to evaluate

$$(f + g)(4),\quad (f - g)(-2),\quad (fg)(1),\quad \text{and} \quad \left(\frac{f}{g}\right)(0).$$

b.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$h(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-3</td>
<td>undefined</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>undefined</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

- $f(4) = 9, \quad g(4) = 2$
- $= f(4) + g(4)$

 $= 9 + 2 = 11$

- $(fg)(1) = f(1) \cdot g(1) = 3 \cdot 1 = 3$
Example 3

EVALUATING COMBINATIONS OF FUNCTIONS

If possible, use the given representations of functions f and g to evaluate

$$(f + g)(4), \quad (f - g)(-2), \quad (fg)(1), \quad \text{and} \quad \left(\frac{f}{g}\right)(0).$$

b. $f(4) = 9 \quad g(4) = 2$

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$h(x)$</th>
<th>$\frac{f}{g}(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-3</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

$= f(4) + g(4)$

$= 9 + 2 = 11$

And $\frac{f}{g}(0) = \frac{f(0)}{g(0)}$ is undefined since $g(0) = 0$
Example 3

EVALUATING COMBINATIONS OF FUNCTIONS

If possible, use the given representations of functions f and g to evaluate $(f + g)(4)$, $(f - g)(-2)$, $(fg)(1)$, and $\left(\frac{f}{g}\right)(0)$.

c. $f(x) = 2x + 1$, $g(x) = \sqrt{x}$

$(f + g)(4) = f(4) + g(4) = (2 \cdot 4 + 1) + \sqrt{4} = 9 + 2 = 11$

$(f - g)(-2) = f(-2) + g(-2) = [2(-2) + 1] - \sqrt{-2}$

is undefined.

$(fg)(1) = f(1) \cdot g(1) = (2 \cdot 1 + 1) \sqrt{1} = 3(1) = 3$
EVALUATING COMBINATIONS OF FUNCTIONS

Example 3

c. \(f(x) = 2x + 1 \), \(g(x) = \sqrt{x} \)

\((f + g)(4) = f(4) + g(4) = (2 \cdot 4 + 1) + \sqrt{4} = 9 + 2 = 11\)

\((f - g)(-2) = f(-2) + g(-2) = [2(-2) + 1] - \sqrt{-2}\)

is undefined.

\((fg)(1) = f(1) \cdot g(1) = (2 \cdot 1 + 1) \sqrt{1} = 3(1) = 3\)

\(\left(\frac{f}{g}\right)\) is undefined.
Example 4 FINDING THE DIFFERENCE QUOTIENT

Let \(f(x) = 2x^2 - 3x \). Find the difference quotient and simplify the expression.

Solution

Step 1 Find the first term in the numerator, \(f(x + h) \). Replace the \(x \) in \(f(x) \) with \(x + h \).

\[
f(x + h) = 2(x + h)^2 - 3(x + h)
\]
Example 4 FINDING THE DIFFERENCE QUOTIENT

Let \(f(x) = 2x - 3x \). Find the difference quotient and simplify the expression.

Solution

Step 2 Find the entire numerator \(f(x + h) - f(x) \).

\[
\begin{align*}
f(x + h) - f(x) &= \left[2(x + h)^2 - 3(x + h) \right] - (2x^2 - 3x) \\
&= 2(x^2 + 2xh + h^2) - 3(x + h) - (2x^2 - 3x)\end{align*}
\]

Remember this term when squaring \(x + h \)
Example 4 FINDING THE DIFFERENCE QUOTIENT

Let \(f(x) = 2x - 3x \). Find the difference quotient and simplify the expression.

Solution

Step 2 Find the entire numerator \(f(x + h) - f(x) \).

\[
= 2(x^2 + 2xh + h^2) - 3(x + h) - (2x^2 - 3x)
\]

\[
= 2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x
\]

Distributive property

\[
= 4xh + 2h^2 - 3h
\]

Combine terms.
Example 4 FINDING THE DIFFERENCE QUOTIENT

Let \(f(x) = 2x - 3x \). Find the difference quotient and simplify the expression.

Solution

Step 3 Find the quotient by dividing by \(h \).

\[
\frac{f(x + h) - f(x)}{h} = \frac{4xh + 2h^2 - 3h}{h}
\]

Substitute.

\[
= \frac{h(4x + 2h - 3)}{h}
\]

Factor out \(h \).

\[
= 4x + 2h - 3
\]

Divide.
Caution Notice that $f(x + h)$ is not the same as $f(x) + f(h)$. For $f(x) = 2x^2 - 3x$ in Example 4.

$$f(x + h) = 2(x + h)^2 - 3(x + h) = 2x^2 + 4xh + 2h^2 - 3x - 3h$$

but

$$f(x) + f(h) = (2x^2 - 3x) + (2h^2 - 3h) = 2x^2 - 3x + 2h^2 - 3h$$

These expressions differ by $4xh$.
Composition of Functions and Domain

If f and g are functions, then the **composite function**, or **composition**, of g and f is defined by

$$(g \circ f)(x) = g(f(x)).$$

The **domain of** $g \circ f$ is the set of all numbers x in the domain of f such that $f(x)$ is in the domain of g.

Copyright ©2009 Pearson Education, Inc.
Example 5

EVALUATING COMPOSITE FUNCTIONS

Let \(f(x) = 2x - 1 \) and \(g(x) = \frac{4}{x - 1} \)

a. Find \((f \circ g)(2) \).

Solution First find \(g(2) \). Since \(g(x) = \frac{4}{x - 1} \),

\[
g(2) = \frac{4}{2 - 1} = \frac{4}{1} = 4
\]

Now find \((f \circ g)(2) = f(g(2)) = f(4) : \)

\[
f(g(2)) = f(4) = 2(4) - 1 = 7
\]
Example 5

EVALUATING COMPOSITE FUNCTIONS

Let \(f(x) = 2x - 1 \) and \(g(x) = \frac{4}{x - 1} \)

b. Find \((g \circ f)(-3)\).

Solution \((f \circ g)(-3) = g(f(-3)) = g(-7)\):

\[
= \frac{4}{-7 - 1} = \frac{4}{-8} = -\frac{1}{2}.
\]

Don’t confuse composition with multiplication
Example 8

SHOWING THAT $$(g \circ f)(x) \neq (f \circ g)(x)$$

Let $f(x) = 4x + 1$ and $g(x) = 2x^2 + 5x$.

Show that $(g \circ f)(x) \neq (g \circ f)(x)$ in general.

Solution

First, find $(g \circ f)(x)$.

$$(g \circ f)(x) = g(f(x)) = g(4x + 1) \quad f(x) = 4x + 1$$

$$= 2(4x + 1)^2 + 5(4x + 1) \quad g(x) = 2x^2 + 5x$$

Square $4x + 1$; distributive property.

$$= 2(16x^2 + 8x + 1) + 20x + 5$$
Example 8

SHOWING THAT \((g \circ f)(x) \neq (f \circ g)(x)\)

Let \(f(x) = 4x + 1\) and \(g(x) = 2x^2 + 5x\).
Show that \((g \circ f)(x) \neq (g \circ f)(x)\) in general.

Solution
First, find \((g \circ f)(x)\).

\[
(g \circ f)(x) = 2(16x^2 + 8x + 1) + 20x + 5
\]

Distributive property.

\[
= 32x^2 + 16x + 2 + 20x + 5
\]

Combine terms.

\[
= 32x^2 + 36x + 7
\]
Example 8

SHOWING THAT \((g \circ f)(x) \neq (f \circ g)(x)\)

Let \(f(x) = 4x + 1\) and \(g(x) = 2x^2 + 5x\).
Show that \((g \circ f)(x) \neq (g \circ f)(x)\) in general.

Solution

Now find \((f \circ g)(x)\).

\[
(f \circ g)(x) = f(g(x))
\]

\[
= f\left(2x^2 + 5x\right) \quad g(x) = 2x^2 + 5x
\]

\[
= 4\left(2x^2 + 5x\right) + 1 \quad f(x) = 4x + 1
\]

\[
= 8x^2 + 20x + 1 \quad \text{Distributive property}
\]

So... \((g \circ f)(x) \neq (f \circ g)(x)\).