An Efficient Technique for Solving Special Integral Equations

Jafar Biazar and Mostafa Eslami
Department of Mathematics
Faculty of Sciences
University of Guilan
P.O. Box 413351914
P.C. 419383697
Rasht, Iran
biazar@guilan.ac.ir m.eslami@guilan.ac.ir

Received: September 14, 2009; Accepted: April 13, 2010

Abstract

In this paper, we apply a new technique for solving two-dimensional integral equations of mixed type. Comparisons are made between the homotopy perturbation method and the new technique. The results reveal that the new technique is effective and convenient.

Keywords: Homotopy perturbation method, New technique, Two-dimensional integral equations

MSC (2000) No.: 45A05, 45F99

1. Introduction

In recent years there has been a growing interest in the integral equations. An integral equation is an important branch of modern mathematics. It arises frequently in many applied areas which include engineering, mechanics potential theory, electrostatics, etc.
Consider the following linear integral equation of mixed type

\[u(x,y) = f(x,y) + \int_a^b \int_s^t k(x,y,s,t)u(s,t)dsdt, \quad (1) \]

where \(u(x,y) \) is an unknown function, the known functions \(f(x,y), k(x,y,s,t) \) are defined on \(D = [a,b] \times [c,d] \), and \(s = \{(x,y,s,t): a \leq x, s \leq b, c \leq t \leq y \leq d\} \), respectively.

We consider (1) as

\[L(u) = u(x,y) - f(x,y) - \int_a^b \int_s^t k(x,y,s,t)u(s,t)dsdt = 0, \quad (2) \]

with solution \(u(x,y) = \varphi(x,y) \). We define the homotopy by

\[H(u,p) = (1-p)F(u) + pL(u) = 0, \quad (3) \]

where \(F(u) \) is a functional operator, and let’s \(u_0 \), be the solution of \(F(u) = 0 \), which can be obtained easily. Obviously, from equation (3) we will have

\[H(u,0) = F(u), \quad H(u,1) = L(u), \]

and continuously trace an implicitly defined curve from a starting point \(H(u_0,0) \) to a solution \(H(\varphi,1) \). The embedding parameter \(p \) monotonically increases from zero to unity as the trivial problem \(F(u) = 0 \) continuously deformed to the original problem \(L(\varphi) = 0 \).

The homotopy perturbation method considers the solution as a power series, say

\[u = u_0 + pu_1 + p^2u_2 + \cdots, \quad (4) \]

where \(p \) is called an embedding parameters. Substituting (4) into (3) and equating the terms with identical power of \(p \), we obtain
These terms can be used to construct the solution, for \(p = 1 \), given in (4).

2. The New Technique

To accelerate the convergence of homotopy perturbation method, when it used for Volterra-Fredholm integral equations, \(k(x, y, s, t) \) or \(f(x, y) \) can be replaced by a series of finite components. These terms be expressed in series

\[
f(x, y) = \sum_{i=0}^{\infty} f_i(x, y), \quad k(x, y, s, t) = \sum_{i=1}^{\infty} k_i(x, y, s, t).
\]

In case of separable \(k_i(x, y, s, t), f_i(x, y) \) for \(i = 1, \ldots, k \), say \(k_i(x, y, s, t) = k_{i1}(x)k_{i2}(y)k_{i3}(s)k_{i4}(t) \), \(f_i(x, y) = f_{i1}(x)f_{i2}(y) \), and functions \(k_{i1}(x), k_{i2}(y), k_{i3}(s), k_{i4}(t) \) and \(f_{i1}(x), f_{i2}(y) \) are analytic suggested to be replaced by their Taylor series form

\[
f_i(x, y) = \sum_{i=0}^{\infty} f_{i1}(x) \sum_{j=0}^{\infty} f_{i2}(y),
\]

\[
k_i(x, y, s, t) = k_{i1}(x)k_{i2}(y)k_{i3}(s)k_{i4}(t) = \sum_{i=0}^{\infty} k_{i1}(x) \sum_{j=0}^{\infty} k_{i2}(y) \sum_{k=0}^{\infty} k_{i3}(s) \sum_{l=0}^{\infty} k_{i4}(t).
\]

Substitution Equation (5) into Equation (2) results in

\[
L(u) = u(x, y) - \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} f_{i1}(x) \sum_{k=0}^{\infty} f_{i2}(y) \right) - \int_c^b \int_a^b \left(\sum_{i=0}^{\infty} k_{i1}(x) \sum_{j=0}^{\infty} k_{i2}(y) \sum_{k=0}^{\infty} k_{i3}(s) \sum_{l=0}^{\infty} k_{i4}(t) \right) u(s, t) ds dt = 0.
\]

The following homotopy can be constructed

\[
H(u, p) = u(x, y) - \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} f_{i1}(x) p^i \sum_{k=0}^{\infty} f_{i2}(y) p^j \right) - p \int_c^b \int_a^b \left(\sum_{i=0}^{\infty} k_{i1}(x) p^i \sum_{j=0}^{\infty} k_{i2}(y) p^j \sum_{k=0}^{\infty} k_{i3}(s) p^{k} \sum_{l=0}^{\infty} k_{i4}(t) p^l \right) u(s, t) ds dt = 0.
\]
Substituting (4) into (6) and equating the coefficients of the terms with identical powers of p, components of series solution (4) will be obtained. This technique is simple and very effective tool which usually leads to the exact solutions.

3. Numerical Example

To illustrate the ability and reliability of the method, two examples are presented. See Hadizadeh and Asgary (2005) and Guoqiang and Liqinq (1994).

Example 1:

Consider the following Volterra-Fredholm integral equation

$$u(x, y) = f(x, y) + \int_0^1 \int_0^1 x^2 e^{-s} u(s, t) ds dt,$$

where

$$f(x, y) = y^2 e^x - \frac{2}{3} x^2 y^3,$$

with the exact solution as $u(x, y) = y^2 e^x$.

Homotopy Perturbation Method (HPM):

Using HPM, we have

$$u(x, y) = f(x, y) + p \int_0^1 \int_0^1 x^2 e^{-s} u(s, t) ds dt.$$

Substituting (4) into (8) and equating the coefficients of the terms with the identical powers of p, leads to

$$p^0 : u_0(x, y) = f(x, y) = y^2 e^x - \frac{2}{3} x^2 y^3,$$

$$p^1 : u_1(x, y) = \int_0^1 \int_0^1 x^2 e^{-s} u_0(x, y) ds dt \Rightarrow u_1(x, y) = -\frac{1}{6} y^4 x^2 e + \frac{5}{6} y^4 x^2 e^1 + \frac{2}{3} x^2 y^3,$$

$$p^2 : u_2(x, y) = \int_0^1 \int_0^1 x^2 e^{-s} u_1(x, y) ds dt \Rightarrow u_2(x, y) = \frac{1}{3} y^5 x^2 - \frac{5}{6} y^5 x^2 e^2 - \frac{1}{30} y^5 x^2 e^3 + \frac{5}{6} y^4 x^2 e^1 + \frac{1}{6} y^4 x^2 e,$$

$$p^{i+1} : u_{i+1}(x, y) = \int_0^1 \int_0^1 x^2 e^{-s} u_i(x, y) ds dt,$$

$$\vdots$$
Then, the series solution, by the homotopy perturbation method, is as follows

\[u(x, y) = \sum_{i=0}^{\infty} u_i(x, y) = y^2 e^x - \frac{2}{3} x^2 y^3 - \frac{1}{6} y^4 x^2 e^x + \frac{5}{6} y^4 x^2 e^{-x} + \frac{2}{3} x^2 y^3 + \frac{1}{3} y^5 x^2 + \cdots. \]

The New Technique:

The Taylor series of \(f(x, y) \) and \(k(x, y, s, t) \) are as follows

\[f(x, y) = y^2 \sum_{n=0}^{\infty} \frac{x^n}{n!} - \frac{2}{3} x^2 y^3, \]
\[k(x, y, s, t) = x^2 \sum_{n=0}^{\infty} \frac{(-s)^n}{n!}. \]

By substitution of these series into the equation (7), the following homotopy can be constructed

\[u(x, y) = y^2 \sum_{n=0}^{\infty} \frac{x^n}{n!} p^n - \frac{2}{3} x^2 y^3 + p \int_0^1 \int_0^1 x^2 \sum_{n=0}^{\infty} \frac{(-s)^n}{n!} p^n u(s, t) ds dt. \] \hspace{1cm} (9)

Substituting (4) in to (9), and equating the coefficients of the terms with the identical powers of \(p \), leads to

\[p^0 : u_0(x, y) = y^2 - \frac{2}{3} x^2 y^3, \]
\[p^1 : u_1(x, y) = y^2 x + \int_0^1 \int_0^1 x^2 \left(-\frac{2}{3} s^2 t^3 + t^2 \right) ds dt \Rightarrow u_1(x, y) = y^2 x + \frac{2}{3} x^2 y^3 - \frac{1}{9} x^2 y^4, \]
\[p^2 : u_2(x, y) = y^2 \frac{x^2}{2} + \int_0^1 \int_0^1 x^2 \left(-\frac{1}{9} s^2 t^4 + \frac{2}{3} s^2 t^3 + t^2 s - s\left(-\frac{2}{3} s^2 t^3 + t^2 \right) \right) ds dt \Rightarrow u_2(x, y) = \frac{1}{2} y^2 x^2 + \frac{1}{9} x^2 y^4 - \frac{2}{135} x^2 y^5, \]
\[p^{i+1} : u_{j+1}(x, y) = y^2 \frac{x^{(j+1)}}{(j+1)!} + \int_0^1 \int_0^1 x^2 \sum_{k=0}^{j} \frac{(-s)^k}{k!} u_{j-k}(s, t) ds dt, \]
\[\vdots \]

Therefore, the solution of Example 2 can be readily obtained by

\[u(x, y) = \sum_{i=0}^{\infty} u_i(x, y) = y^2 \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \cdots \right), \]
which is the Taylor series of \(u(x, y) = y^2 e^x \), i.e., the exact solution.

Example 2.

Let’s solve the Volterra-Fredholm integral equation

\[
u(x, y) = f(x, y) + \int_0^1 \int_1^e s e^u(s, t) ds dt,
\]

where

\[
f(x, y) = x + \sin y - \frac{2}{3} e^x + \frac{2}{3},
\]

with the exact solution

\[
u(x, y) = x + \sin y.
\]

Let’s use the new technique to solve this equation:

Taylor series of \(f(x, y) \) and \(k(x, y, s, t) \) will be used as

\[
f(x, y) = x + \sum_{n=0}^{\infty} \frac{(-1)^n (y)^{2n+1}}{(2n+1)!} - \frac{2}{3} \sum_{n=0}^{\infty} \frac{y^n}{n!} + \frac{2}{3},
\]

And

\[
k(x, y, s, t) = s \sum_{n=0}^{\infty} \frac{t^n}{n!}
\]

Substitution of these series in equation (10), the following homotopy can be constructed

\[
u(x, y) = x + \sum_{n=0}^{\infty} \frac{(-1)^n (y)^{2n+1}}{(2n+1)!} p^n - \frac{2}{3} \sum_{n=0}^{\infty} \frac{y^n}{n!} p^n + \frac{2}{3} + p \int_0^e \int_1^e s \sum_{n=0}^{\infty} \frac{t^n}{n!} p^n u(s, t) ds dt.
\]

Substituting (4) into (11) and equating the terms with identical powers of \(p \), gives

\[
p^0 : u_0(x, y) = x + y,
\]

\[
p^1 : u_1(x, y) = -\frac{y^3}{6} - \frac{2}{3} y + \int_0^e \int_1^e s(s + t) ds dt \Rightarrow u_1(x, y) = -\frac{y^3}{3!},
\]
\[p^2: u_2(x, y) = \frac{y^5}{5!} - \frac{1}{3} y^2 + \int_0^y \int_0^s \left(t(t + s) - \frac{t^3}{6} \right) dsdt \Rightarrow u_2(x, y) = \frac{y^5}{5!}, \]

\[\vdots \]

\[p^{r+1}: u_{r+1}(x, y) = \frac{(-1)^{r+1} y^{2r+3}}{(2j+3)!} - \frac{2}{3} \frac{y^{r+1}}{(r+1)!} + \int_0^y \int_0^s \sum_{k=0}^r \frac{t^k}{k!} u_{j-k}(s,t)dsdt, \]

\[\vdots \]

Therefore, the solution of Example 2 can be readily presented by

\[u(x, y) = \sum_{i=0}^{\infty} u_i(x, y) = x + y - \frac{y^3}{3!} + \frac{y^5}{5!} - \frac{y^7}{7!} + \cdots. \]

With the summation, \(u(x, y) = x + \sin y \), which is the exact solution.

4. Conclusion

In this paper we present an efficient technique for solving special integral equations of mixed type. Comparisons are made between the homotopy perturbation method and the new technique. From the computational viewpoint, the new technique is more efficient and easy to use.

REFERENCES

