Chapter 3 — Arithmetic for Computers

Integer Addition
- Example: 7 + 6

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Overflow if result out of range
 - Adding +ve and -ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two -ve operands
 - Overflow if result sign is 0

Integer Subtraction
- Add negation of second operand
- Example: 7 − 6 = 7 + (−6)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add neg</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from -ve operand
 - Overflow if result sign is 0
 - Subtracting -ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow
- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mflo (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia
- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
- SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video
Multiplication

- Start with long-multiplication approach

```
1000  
× 1001
```

```
0000  
0000
```

```
1000 1001000
```

Length of product is the sum of operand lengths

§3.3 Multiplication

Optimized Multiplier

- Perform steps in parallel: add/shift
- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff
- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - `mult rs, rt /
 multu rs, rt`
 - 64-bit product in HI/LO
 - `mhi rd / mflo rd`
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - `mul rd, rs, rt`
 - Least-significant 32 bits of product -> rd

Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder
Division Hardware

Initially dividend

Initially divisor

in left half

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division

- Can’t use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division)
 - generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - `div rs, rt` / `divu rs, rt`
- No overflow or divide-by-0 checking
 - Software must perform checks if required
- Use `mfhi`, `mflo` to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34×10^{66}
 - $+0.002 \times 10^{-4}$
 - $+987.02 \times 10^{9}$
- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types `float` and `double` in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)
IEEE Floating-Point Format

<table>
<thead>
<tr>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>Fraction</td>
</tr>
</tbody>
</table>

\[
x = (-1)^S \times (1 + \text{Fraction}) \times 2^{\text{Exponent} - \text{Bias}}
\]

- **S**: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significant is Fraction with the “1.” restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 000000001 ⇒ actual exponent = 1 – 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - ±1.0 × 2^{–126} = ±1.2 × 10^{–38}
- Largest value
 - Exponent: 11111110 ⇒ actual exponent = 254 – 127 = +127
 - Fraction: 111...11 ⇒ significand = 2.0
 - ±2.0 × 2^{+127} = ±3.4 × 10^{+38}

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 00000000001 ⇒ actual exponent = 1 – 1023 = –1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - ±1.0 × 2^{–1022} = ±2.2 × 10^{–308}
- Largest value
 - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111...11 ⇒ significand = 2.0
 - ±2.0 × 2^{+1023} = ±1.8 × 10^{+308}

Floating-Point Precision

- Relative precision
 - All fraction bits are significant
 - Single: approx 2^{–23}
 - Equivalent to 23 × log_{10}2 = 23 × 0.3 = 6 decimal digits of precision
 - Double: approx 2^{–52}
 - Equivalent to 52 × log_{10}2 = 52 × 0.3 = 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - –0.75 = (–1)^1 × 1.1_2 × 2^{–1}
 - S = 1
 - Fraction = 1000...00
 - Exponent = –1 + Bias
 - Single: –1 + 127 = 126 = 01111110_2
 - Double: –1 + 1023 = 1022 = 0111111110_2
 - Single: 1011111101000...00
 - Double: 1011111111101000...00

Floating-Point Example

- What number is represented by the single-precision float
 - 11000000101000...00
 - S = 1
 - Fraction = 01000...00_2
 - Exponent = 10000001_2 = 129
 - x = (–1)^1 × (1 + 01_2) × 2^{(129 – 127)}
 - = (–1) × 1.25 × 2^2
 - = –5.0
Denormal Numbers

- Exponent = 000...0 ⇒ hidden bit is 0
 \[x = (-1)^0 \times (0 + \text{Fraction}) \times 2^{-\text{Bias}} \]
- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0
 \[x = (-1)^0 \times (0 + 0) \times 2^{-\text{Bias}} = \pm 0.0 \]

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - 9.999 \times 10^1 + 1.610 \times 10^{-1}
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 \times 10^1 + 0.016 \times 10^1
- 2. Add significands
 - 9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1
- 3. Normalize result & check for over/underflow
 - 1.0015 \times 10^2
- 4. Round and renormalize if necessary
 - 1.002 \times 10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - 1.0002 \times 2^{-1} + –1.1102 \times 2^{-2} (0.5 + –0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - 1.0002 \times 2^{-1} + –0.1112 \times 2^{-1}
- 2. Add significands
 - 1.0002 \times 2^{-1} + –0.1112 \times 2^{-1} = 0.0012 \times 2^{-1}
- 3. Normalize result & check for over/underflow
 - 1.0002 \times 2^{-4}, with no over/underflow
- 4. Round and renormalize if necessary
 - 1.0002 \times 2^{-4} (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined
Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent: $10 + (-5) = 5$
- Multiply significands
 - $1.110 \times 9.200 = 10.212$
- Normalize result & check for over/underflow
 - 1.0212×10^{6}
- Round and renormalize if necessary
 - 1.021×10^{6}
- Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$

Now consider a 4-digit binary example

- $1.0002 \times 2^{-1} \times (1.1102 \times 2^{-2})$ (0.5 × –0.4375)
- Add exponents
 - Unbiased: $-1 + -2 = -3$
 - Biased: $(-1 + 127) + (-2 + 127) = -3 + 254 - 127 = -3 + 127$
- Multiply significands
 - $1.000 \times 1.110 = 1.110 \times 2^{-3}$
- Normalize result & check for over/underflow
 - 1.110×2^{-3} (no change) with no over/underflow
- Round and renormalize if necessary
 - 1.110×2^{-3} (no change)
- Determine sign: +ve × –ve
 - -0.21875

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
- FP ↔ integer conversion
- Operations usually takes several cycles
- Can be pipelined

FP Instructions in MIPS

- Single-precision arithmetic
 - `add.s, sub.s, mul.s, div.s`
 - e.g., `add.s $f0, $f1, $f6`
- Double-precision arithmetic
 - `add.d, sub.d, mul.d, div.d`
 - e.g., `mul.d $f4, $f4, $f6`
- Single- and double-precision comparison
 - `c.xxx.s, c.xx.d (xxx eq, lt, le, ...)`
 - Sets or clears FP condition-code bit
 - e.g., `c.lt.s $f13, $f14`
- Branch on FP condition code true or false
 - `bclt, bclf`
 - e.g., `bclt TargetLabel`

FP Example: °F to °C

- C code:
  ```c
  float f2c (float fahr) {
    return (5.0/9.0)*(fahr - 32.0);
  }
  ```
- IFahr in $f12, result in $f0, literals in global memory space
- Compiled MIPS code:
  ```assembly
  f2c: lwc1 $f16, const5($gp)
  lwc2 $f18, const9($gp)
  div.s $f16, $f16, $f18
  lwc1 $f18, const32($gp)
  sub.s $f18, $f12, $f18
  mul.s $f10, $f16, $f18
  jr $ra
  ```
FP Example: Array Multiplication

- \(X = X + Y \times Z \)
- All 32 \times 32 matrices, 64-bit double-precision elements
- C code:
  ```c
  void mm (double x[32][32], double y[32][32], double z[32][32]) {
    int i, j, k;
    for (i = 0; i != 32; i = i + 1)
      for (j = 0; j != 32; j = j + 1)
        for (k = 0; k != 32; k = k + 1)
          x[i][j] = x[i][j] + y[i][k] * z[k][j];
  }
  ``
- Addresses of \( x, y, z \) in \$a0, \$a1, \$a2, and \( i, j, k \) in \$s0, \$s1, \$s2

**MIPS code:**

```mips
li $t1, 32 # $t1 = 32 (row size/loop end)
li $s0, 0 # i = 0; initialize 1st for loop
L1: li $s1, 0 # j = 0; restart 2nd for loop
L2: li $s2, 0 # k = 0; restart 3rd for loop
 sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)
 addu $t2, $t2, $s1 # $t2 = i * size(row) + j
 sll $t2, $t2, 3 # $t2 = byte offset of \[i\][j]
 addu $t2, $a0, $t2 # $t2 = byte address of x\[i\][j]
 l.d $f4, 0($t2) # $f4 = 8 bytes of x\[i\][j]
 sll $t0, $s2, 5 # $t0 = k * 32 (size of row of y)
 addu $t0, $t0, $s1 # $t0 = k * size(row) + j
 sll $t0, $t0, 3 # $t0 = byte offset of \[k\][j]
 addu $t0, $a1, $t0 # $t0 = byte address of y\[k\][j]
 l.d $f16, 0($t0) # $f16 = 8 bytes of y\[k\][j]
 mul.d $f16, $f18, $f16 # $f16 = y\[k\][j] * z\[k\][j]
 add.d $f4, $f4, $f16 # f4 = x\[i\][j] + y\[k\][j] * z\[k\][j]
 addiu $s2, $s2, 1 # $k = k + 1
 bne $s2, $t1, L3 # if (k != 32) go to L3
 s.d $f4, 0($t2) # x\[i\][j] = $f4
 addiu $s1, $s1, 1 # $j = j + 1
 bne $s1, $t1, L2 # if (j != 32) go to L2
 sll $t0, $s0, 5 # $t0 = i * 32 (size of row of z)
 addu $t0, $t0, $s1 # $t0 = i * size(row) + k
 sll $t0, $t0, 3 # $t0 = byte offset of \[i\][k]
 addu $t0, $a2, $t0 # $t0 = byte address of z\[i\][k]
 l.d $f16, 0($t0) # $f16 = 8 bytes of z\[i\][k]
 addu $s0, $s0, 1 # $i = i + 1
 bne $s0, $t1, L1 # if (i != 32) go to L1
```

**Accurate Arithmetic**

- IEEE Std 754 specifies additional rounding control
  - Extra bits of precision (guard, round, sticky)
  - Choice of rounding modes
  - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
  - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

**Interpretation of Data**

- Bits have no inherent meaning
  - Interpretation depends on the instructions applied
- Computer representations of numbers
  - Finite range and precision
  - Need to account for this in programs

**Associativity**

- Parallel programs may interleave operations in unexpected orders
  - Assumptions of associativity may fail
    ```plaintext
 (x+y)+z x+(y+z)
 x = -1.50E+38 x = -1.50E+38
 y = 1.00E+38
 z = 1.00E+00 z = 1.00E+00
 1.00E+38
 0.00E+00
    ```
- Need to validate parallel programs under varying degrees of parallelism
**Chapter 3 — Arithmetic for Computers**

**x86 FP Architecture**
- Originally based on 8087 FP coprocessor
- 8 × 80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
  - Converted on load/store of memory operand
  - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
  - Result: poor FP performance

**x86 FP Instructions**

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
<th>Transcendental</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILO</td>
<td>F ADDP</td>
<td>F COMP</td>
<td>FPTAN</td>
</tr>
<tr>
<td>FII P</td>
<td>F SUBRP</td>
<td>F SUBRP</td>
<td>F FSQRT</td>
</tr>
<tr>
<td>FLDP</td>
<td>F ADD</td>
<td>F MULP</td>
<td>FPREM</td>
</tr>
<tr>
<td>FLDQ</td>
<td>F SQRT</td>
<td>F XMP</td>
<td>FPSIN</td>
</tr>
<tr>
<td>FLDZ</td>
<td>F FABS</td>
<td>F FSTSW</td>
<td>FMSK</td>
</tr>
<tr>
<td>FADD</td>
<td>F FSQRT</td>
<td>F FST</td>
<td>FMA</td>
</tr>
<tr>
<td>FABS</td>
<td>F FSTSW</td>
<td></td>
<td>FADD</td>
</tr>
<tr>
<td>FST</td>
<td>F FSTSW</td>
<td></td>
<td>FST</td>
</tr>
<tr>
<td>FLDP</td>
<td>F FSTSW</td>
<td></td>
<td>FST</td>
</tr>
<tr>
<td>FLDP</td>
<td>F FSTSW</td>
<td></td>
<td>FST</td>
</tr>
</tbody>
</table>

**Streaming SIMD Extension 2 (SSE2)**
- Adds 4 × 128-bit registers
- Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
  - 2 × 64-bit double precision
  - 4 × 32-bit double precision
- Instructions operate on them simultaneously
  - Single-Instruction Multiple-Data

**Right Shift and Division**
- Left shift by \( i \) places multiplies an integer by \( 2^i \)
- Right shift divides by \( 2^i \)
  - Only for unsigned integers
  - For signed integers
    - Arithmetic right shift: replicate the sign bit
      - e.g., \(-5 / 4\)
        - \(11111011_2 >> 2 = 11111110_2 = -2\)
        - Rounds toward \(-\infty\)
      - c.f. \(11111011_2 >>> 2 = 00111110_2 = +62\)

**Who Cares About FP Accuracy?**
- Important for scientific code
  - But for everyday consumer use?
    - "My bank balance is out by 0.0002¢!"
- The Intel Pentium FDIV bug
  - The market expects accuracy
  - See Colwell, *The Pentium Chronicles*

**Concluding Remarks**
- ISAs support arithmetic
  - Signed and unsigned integers
  - Floating-point approximation to reals
  - Bounded range and precision
  - Operations can overflow and underflow
- MIPS ISA
  - Core instructions: 54 most frequently used
    - 100% of SPECINT, 97% of SPECFP
  - Other instructions: less frequent